ﻻ يوجد ملخص باللغة العربية
Using a conventional Hall-bar geometry with a micro-metal strip on top of the surface, we demonstrate an electrical coherent control of nuclear spins in an AlGaAs/GaAs semiconductor heterostructure. A breakdown of integer quantum Hall (QH) effect is utilized to dynamically polarize nuclear spins. By applying a pulse rf magnetic field with the metal strip, the quantum state of the nuclear spins shows Rabi oscillations, which is detected by measuring longitudinal voltage of the QH conductor.
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, a
A coherent superposition of many nuclear spin states can be prepared and manipulated via the hyperfine interaction with the electronic spins by varying the Landau level filling factor through the gate voltage in appropriately designed Quantum Hall Fe
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zer
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambi