ﻻ يوجد ملخص باللغة العربية
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photo-excited electron which acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric lineshapes at high optical excitation. The all-optical control of the NMR lineshape will enable position-selective control of small groups of nuclear spins in a dot. Our calculations also show that the asymmetric NMR peak lineshapes can provide information on the volume of the electron wave-function, and may be used for measurements of non-uniform distributions of atoms in nano-structures.
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin or up to a few hundred mT for the hole spin. Recently this has been recognized as
We report a dual resonance feature in ballistic conductance through a quantum Hall graphene nanoribbon with a magnetic quantum dot. Such a magnetic quantum dot localizes Dirac fermions exhibiting anisotropic eigenenergy spectra with broken time-rever
The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zer
Optically addressable spins in materials are important platforms for quantum technologies, such as repeaters and sensors. Identification of such systems in two-dimensional (2d) layered materials offers advantages over their bulk counterparts, as thei
Electric fields are central to the operation of optoelectronic devices based on conjugated polymers since they drive the recombination of electrons and holes to excitons in organic light-emitting diodes but are also responsible for the dissociation o