ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation, dissipation, and thermalization in non-equilibrium AdS_5 black hole geometries

258   0   0.0 ( 0 )
 نشر من قبل Derek Teaney
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a simple recipe for computing dissipation and fluctuations (commutator and anti-commutator correlation functions) for non-equilibrium black hole geometries. The recipe formulates Hawking radiation as an initial value problem, and is suitable for numerical work. We show how to package the fluctuation and dissipation near the event horizon into correlators on the stretched horizon. These horizon correlators determine the bulk and boundary field theory correlation functions. In addition, the horizon correlators are the components of a horizon effective action which provides a quantum generalization of the membrane paradigm. In equilibrium, the analysis reproduces previous results on the Brownian motion of a heavy quark. Out of equilibrium, Wigner transforms of commutator and anti-commutator correlation functions obey a fluctuation-dissipation relation at high frequency.

قيم البحث

اقرأ أيضاً

The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite temperature in the context of linear response theory, where only small deviations from the mean are considered. We show that for an open qu antum system interacting with a non-equilibrium environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Clearly stated, quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations can be made to vanish. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty principle, both in its microscopic origins and its influence upon systems. Moreover, it is shown that the non-equilibrium fluctuation-dissipation relation determines the non-equilibrium uncertainty relation in the weak-damping limit.
231 - A. Sarracino , A. Vulpiani 2019
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita ble correlation functions computed in the unperperturbed dynamics. In these relations, typically one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in non-standard cases, including driven granular media, systems with a multiscale structure, active matter and systems showing anomalous diffusion.
Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint app roximation these probes are computed in AdS space in terms of invariant geometric objects - geodesics, minimal surfaces and minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly coupled setting, all probes in all dimensions share certain universal features in their thermalization: (1) a slight delay in the onset of thermalization, (2) an apparent non-analyticity at the endpoint of thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial conditions the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy density is nearly volume-independent for small volumes, but slows for larger volumes.
152 - Jay Armas , Matthias Blau 2015
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dim ensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal $p$-branes as well as helicoidal black rings and helicoidal black tori in $Dge6$.
In this work, I calculate the $p_perp$ resolved spectra for the three stages of the textit{bottom-up} scenario, which are comparable to the thermal contribution, particularly at higher values of the saturation scale $Q_S^2$. Analytical solutions are obtained by including a parametrization of scaling solutions from far-from-equilibrium classical statistical lattice simulations into a small angle kinetic rate. Furthermore, a theoretically motivated ansatz is used to account for near-collinear enhancement of the low-$p_perp$ radiation. The system is phenomenologically constrained using the charge hadron multiplicities from LHC and RHIC as in previous parametric estimates and fair agreement with the data available for photons was found. I find that for this realistic set of parameters, the contribution from the thermalizing glasma dominates the excess photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا