ﻻ يوجد ملخص باللغة العربية
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal $p$-branes as well as helicoidal black rings and helicoidal black tori in $Dge6$.
We develop an effective theory which describes black holes with quantum mechanical horizons that is valid at scales long compared to the Schwarzschild radius but short compared to the lifetime of the black hole. Our formalism allows one to calculate
We use the recipe of arXiv:1003.2974 to find half-BPS near-horizon geometries in the t$^3$ model of $N=2$, $D=4$ gauged supergravity, and explicitely construct some new examples. Among these are black holes with noncompact horizons, but also with sph
We propose a holographic map between Einstein gravity coupled to matter in a de Sitter background and large N quantum mechanics of a system of spins. Holography maps a spin model with a finite dimensional Hilbert space defined on a version of the str
We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radi
We study the $mathsf{SL}(2)$ transformation properties of spherically symmetric perturbations of the Bertotti-Robinson universe and identify an invariant $mu$ that characterizes the backreaction of these linear solutions. The only backreaction allowe