ﻻ يوجد ملخص باللغة العربية
The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite temperature in the context of linear response theory, where only small deviations from the mean are considered. We show that for an open quantum system interacting with a non-equilibrium environment, where temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Clearly stated, quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations can be made to vanish. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise and is in accord with the Heisenberg uncertainty principle, both in its microscopic origins and its influence upon systems. Moreover, it is shown that the non-equilibrium fluctuation-dissipation relation determines the non-equilibrium uncertainty relation in the weak-damping limit.
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suita
We give a simple recipe for computing dissipation and fluctuations (commutator and anti-commutator correlation functions) for non-equilibrium black hole geometries. The recipe formulates Hawking radiation as an initial value problem, and is suitable
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H
By generalizing the traditional concept of heat dQ and work dW to also include their time-dependent irreversible components d_{i}Q and d_{i}W allows us to express them in terms of the instantaneous internal temperature T(t) and pressure P(t), whereas