ﻻ يوجد ملخص باللغة العربية
We present an evaluation of the performance of an automated classification of the Hipparcos periodic variable stars into 26 types. The sub-sample with the most reliable variability types available in the literature is used to train supervised algorithms to characterize the type dependencies on a number of attributes. The most useful attributes evaluated with the random forest methodology include, in decreasing order of importance, the period, the amplitude, the V-I colour index, the absolute magnitude, the residual around the folded light-curve model, the magnitude distribution skewness and the amplitude of the second harmonic of the Fourier series model relative to that of the fundamental frequency. Random forests and a multi-stage scheme involving Bayesian network and Gaussian mixture methods lead to statistically equivalent results. In standard 10-fold cross-validation experiments, the rate of correct classification is between 90 and 100%, depending on the variability type. The main mis-classification cases, up to a rate of about 10%, arise due to confusion between SPB and ACV blue variables and between eclipsing binaries, ellipsoidal variables and other variability types. Our training set and the predicted types for the other Hipparcos periodic stars are available online.
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to
We present an automated classification of stars exhibiting periodic, non-periodic and irregular light variations. The Hipparcos catalogue of unsolved variables is employed to complement the training set of periodic variables of Dubath et al. with irr
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from
We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unk
We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the