ﻻ يوجد ملخص باللغة العربية
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from weeks to years, with arbitrary time sampling. We use light curves of periodic variable stars taken from OGLE and EROS-2 to train the model. To make our classifier relatively survey-independent, it is trained on 16 features extracted from the light curves (e.g. period, skewness, Fourier amplitude ratio). The model classifies light curves into one of seven superclasses - Delta Scuti, RR Lyrae, Cepheid, Type II Cepheid, eclipsing binary, long-period variable, non-variable - as well as subclasses of these, such as ab, c, d, and e types for RR Lyraes. When trained to give only superclasses, our model achieves 0.98 for both recall and precision as measured on an independent validation dataset (on a scale of 0 to 1). When trained to give subclasses, it achieves 0.81 for both recall and precision. In order to assess classification performance of the subclass model, we applied it to the MACHO, LINEAR, and ASAS periodic variables, which gave recall/precision of 0.92/0.98, 0.89/0.96, and 0.84/0.88, respectively. We also applied the subclass model to Hipparcos periodic variable stars of many other variability types that do not exist in our training set, in order to examine how much those types degrade the classification performance of our target classes. In addition, we investigate how the performance varies with the number of data points and duration of observations. We find that recall and precision do not vary significantly if the number of data points is larger than 80 and the duration is more than a few weeks. The classifier software of the subclass model is available from the GitHub repository (https://goo.gl/xmFO6Q).
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to
We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the
With recent developments in imaging and computer technology the amount of available astronomical data has increased dramatically. Although most of these data sets are not dedicated to the study of variable stars much of it can, with the application o
We present an evaluation of the performance of an automated classification of the Hipparcos periodic variable stars into 26 types. The sub-sample with the most reliable variability types available in the literature is used to train supervised algorit
Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time (light curves). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intrani