ﻻ يوجد ملخص باللغة العربية
We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unknown class. The results are compared to published classification results based on the so-called extractor methods.Two complementary analyses are carried out in parallel. In both cases, the original time series of OGLE observations of the Galactic bulge and Magellanic Clouds are processed in order to identify and characterize the frequency components. In the first approach, the classifiers are applied to the data and the results analyzed in terms of systematic errors and differences between the definition samples in the training set and in the extractor rules. In the second approach, the original classifiers are extended with colour information and, again, applied to OGLE light curves. We have constructed a classification system that can process huge amounts of time series in negligible time and provide reliable samples of the main variability classes. We have evaluated its strengths and weaknesses and provide potential users of the classifier with a detailed description of its characteristics to aid in the interpretation of classification results. Finally, we apply the classifiers to obtain object samples of classes not previously studied in the OGLE database and analyse the results. We pay specific attention to the B-stars in the samples, as their pulsations are strongly dependent on metallicity.
We present an evaluation of the performance of an automated classification of the Hipparcos periodic variable stars into 26 types. The sub-sample with the most reliable variability types available in the literature is used to train supervised algorit
We present a novel automated methodology to detect and classify periodic variable stars in a large database of photometric time series. The methods are based on multivariate Bayesian statistics and use a multi-stage approach. We applied our method to
The exact period determination of a multi-periodic variable star based on its luminosity time series data is believed a task requiring skill and experience. Thus the majority of available time series analysis techniques require human intervention to
We present a machine learning package for the classification of periodic variable stars. Our package is intended to be general: it can classify any single band optical light curve comprising at least a few tens of observations covering durations from
With growing data volumes from synoptic surveys, astronomers must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace thes