ﻻ يوجد ملخص باللغة العربية
In this talk, I present a new mechanism for the generation of neutrino masses via dimension 7 operators: llHH(H*H)/M^3. This leads to new formula for the light neutrino masses, m_ u~v^4/M^3. This is distinct from the usual see-saw formulae: m_ u~v^2/M. The scale of new physics can naturally be at the TeV scale. Microscopic theory that generated d=7 operator has an isospin 3/2 Higgs multiplet Phi, which contains a triply charged Higgs boson with mass around ~TeV or less. These particles can be produced at the LHC (and possibly at the Tevatron) with distinctive multi-W and multi-lepton final states. For some choice of the parameter space, these particles can also be long-lived with the possibility of displaced vertices, or even escaping the detector. Their leptonic decay modes carry information about the nature of the neutrino mass hierarchy.
We propose a new mechanism for generating small neutrino masses which predicts the relation m_ u ~ v^4/M^3, where v is the electroweak scale, rather than the conventional seesaw formula m_ u ~ v^2/M. Such a mass relation is obtained via effective dim
At the Large Hadron Collider (LHC), both the ATLAS and CMS Collaborations have been searching for light charged Higgs bosons via top (anti)quark production and decays channels, like $ppto t bar{t}$ with one top (anti)quark decaying into a charged Hig
Unification at M_{GUT}sim 3times 10^{16} GeV of the three Standard Model (SM) gauge couplings can be achieved by postulating the existence of a pair of vectorlike fermions carrying SM charges and masses of order 300 GeV -- 1 TeV. The presence of thes
We generalize the scalar triplet neutrino mass model, the type II seesaw. Requiring fine-tuning and arbitrarily small parameters to be absent leads to dynamical lepton number breaking at the electroweak scale and a rich LHC phenomenology. A smoking g
We analyse the phenomenological implications of a light Higgs boson, $h$, within the CP-conserving 2-Higgs Doublet Model (2HDM) Type-I, for the detection prospects of the charged $H^pm$ state at Run II of the Large Hadron Collider (LHC), assuming $sq