ﻻ يوجد ملخص باللغة العربية
We generalize the scalar triplet neutrino mass model, the type II seesaw. Requiring fine-tuning and arbitrarily small parameters to be absent leads to dynamical lepton number breaking at the electroweak scale and a rich LHC phenomenology. A smoking gun signature at the LHC that allows to distinguish our model from the usual type II seesaw scenario is identified. Besides, we discuss other interesting phenomenological aspects of the model such as the presence of a massless Goldstone boson and deviations of standard model Higgs couplings
We propose a new mechanism for generating small neutrino masses which predicts the relation m_ u ~ v^4/M^3, where v is the electroweak scale, rather than the conventional seesaw formula m_ u ~ v^2/M. Such a mass relation is obtained via effective dim
In this talk, I present a new mechanism for the generation of neutrino masses via dimension 7 operators: llHH(H*H)/M^3. This leads to new formula for the light neutrino masses, m_ u~v^4/M^3. This is distinct from the usual see-saw formulae: m_ u~v^2/
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the $10%$ level while respecting LHC sparticle and Higgs mass constraints. Gluino and top squark masses can range up to several TeV (with other squarks even heavier) but a
We consider theories where the Standard Model (SM) neutrinos acquire masses through the seesaw mechanism at the weak scale. We show that in such a scenario, the requirement that any pre-existing baryon asymmetry, regardless of its origin, not be wash
Radiatively-driven natural supersymmetry (RNS) potentially reconciles the Z and Higgs boson masses close to 100 GeV with gluinos and squarks lying beyond the TeV scale. Requiring no large cancellations at the electroweak scale in constructing M_Z=91.