ترغب بنشر مسار تعليمي؟ اضغط هنا

New Fermions at the LHC and Mass of the Higgs Boson

67   0   0.0 ( 0 )
 نشر من قبل Ilia Gogoladze
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Unification at M_{GUT}sim 3times 10^{16} GeV of the three Standard Model (SM) gauge couplings can be achieved by postulating the existence of a pair of vectorlike fermions carrying SM charges and masses of order 300 GeV -- 1 TeV. The presence of these fermions significantly modifies the vacuum stability and perturbativity bounds on the mass of the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated to be 117 GeV, to be compared with the SM prediction of about 128 GeV. An upper bound of 190 GeV is obtained based on perturbativity arguments. The impact on these predictions of type I seesaw physics is also discussed. The discovery of a relatively `light Higgs boson with mass sim 117 GeV could signal the presence of new vectorlike fermions within reach of the LHC.

قيم البحث

اقرأ أيضاً

97 - S. Nandi 2010
In this talk, I present a new mechanism for the generation of neutrino masses via dimension 7 operators: llHH(H*H)/M^3. This leads to new formula for the light neutrino masses, m_ u~v^4/M^3. This is distinct from the usual see-saw formulae: m_ u~v^2/ M. The scale of new physics can naturally be at the TeV scale. Microscopic theory that generated d=7 operator has an isospin 3/2 Higgs multiplet Phi, which contains a triply charged Higgs boson with mass around ~TeV or less. These particles can be produced at the LHC (and possibly at the Tevatron) with distinctive multi-W and multi-lepton final states. For some choice of the parameter space, these particles can also be long-lived with the possibility of displaced vertices, or even escaping the detector. Their leptonic decay modes carry information about the nature of the neutrino mass hierarchy.
154 - A. Arhrib , R. Benbrik , M. Krab 2021
At the Large Hadron Collider (LHC), both the ATLAS and CMS Collaborations have been searching for light charged Higgs bosons via top (anti)quark production and decays channels, like $ppto t bar{t}$ with one top (anti)quark decaying into a charged Hig gs boson and a $b$ (anti)quark, when the decay is kinematically open (i.e., when $m_{H^pm}lesssim m_t$). In this paper, we propose new searches at the LHC involving light charged Higgs bosons via their pair production channels like $ppto H^pm h/A$ and $ppto H^+ H^-$ in the 2-Higgs Doublet Model (2HDM) Type-I and -X scenarios. By focusing on the case where the heavy $H$ state plays the role of the Standard Model (SM)-like Higgs boson with a mass near 125 GeV, we study the aforementioned Higgs boson pair production channels and investigate their bosonic decays, such as $H^pm to W^{pm } h$ and/or $H^pm to W^{pm } A$. We demonstrate that for a light charged Higgs boson state, with $m_{H^pm}lesssim m_t$, at the LHC, such di-Higgs production and decay channels can give rise to signatures with event rates much larger than those emerging from $ppto tbar{t}to tbar{b} H^-$ + c.c. We specifically study $h/Ato bbar b$ and $tau^+tau^-$ decays. We, therefore, claim that the discussed combination of new production and decay modes can result in an alternative discovery channel for charged Higgs bosons lighter than the top (anti)quark at the LHC within the above two 2HDM Types. Finally, in order to motivate experimentalists in ATLAS and CMS to search for such signatures, we propose 16 Benchmark Points (BPs) which are compatible with both theoretical and experimental constraints.
We explore the physics of a new neutral gauge boson, ($Z^prime$), coupling to only third-generation particles with a mass near the electroweak gauge boson mass poles. A $Z^prime$ boson produced by top quarks and decaying to tau leptons is considered. With a simple search strategy inspired by existing analyses of the standard model gauge boson production in association with top quarks, we show that the Large Hadron Collider has good exclusionary power over the model parameter space of the $Z^prime$ boson even at the advent of the high-luminosity era. It is shown that the $tbar{t}Z^prime$ process allows one to place limits on right-handed top couplings with a $Z^prime$ boson that preferentially couples to third generation fermions, which are at present very weakly constrained.
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s ince it is the dominant channel in the Standard Model (SM), but the bound obtained is also applicable to the light quarks $(j=u,d,s)$. We estimate the achievable bounds on the decay branching fractions through the associated production $Vh (V=W^pm,Z)$. Events of the Higgs boson decaying into heavy (tagged) or light (un-tagged) jets are correlatively analyzed. We find that with 3000 fb$^{-1}$ data at the HL-LHC, we should expect approximately $1sigma$ statistical significance on the SM $Vh(gg)$ signal in this channel. This corresponds to a reachable upper bound ${rm BR}(hto jj) leq 4~ {rm BR}^{SM}(hto gg)$ at $95%$ confidence level. A consistency fit also leads to an upper bound ${rm BR}(hto cc) < 15~ {rm BR}^{SM}(hto cc)$ at $95%$ confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses, or adding other production channels.
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions dsigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that dsigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where dsigma/dp_T decreases so we suggest that the measurement of an increase in dsigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا