ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Neutrino Astronomy: IceCube 22 and 40 strings

97   0   0.0 ( 0 )
 نشر من قبل Elisa Resconi Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Resconi




اسأل ChatGPT حول البحث

In this paper, after a short introduction to the physics of neutrino telescopes, we will report on first performances of the IceCube detector and a selection of preliminary results obtained from data taken while IceCube operated in a partially completed configuration (22 strings and 40 strings). We will emphasize new analysis methods recently developed for the study of the Southern Hemisphere as well as for extended regions. Based on the long term experience of AMANDA and IceCube, the South Pole ice has proven to be an ideal site for astroparticle physics. New ideas and projects about the future beyond IceCube will conclude this presentation.



قيم البحث

اقرأ أيضاً

In this paper we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during ~20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from May 31, 2007 to April 5, 2008 with its 22-string configuration, and from April 5, 2008 to May 20, 2009 with its 40-string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.
117 - V. Berezinsky 2011
The short review of theoretical aspects of ultra high energy (UHE) neutrinos. The accelerator sources, such as Supernovae remnants, Gamma Ray Bursts, AGN etc are discussed. The top-down sources include Topological Defects (TDs), Superheavy Dark Matte r (SHDM) and Mirror Matter. The diffuse fluxes are considered accordingly as that of cosmogenic and top-down neutrinos. Much attention is given to the cascade upper limit to the diffuse neutrino fluxes in the light of Fermi-LAT data on diffuse high energy gamma radiation. This is most general and rigorous upper limit, valid for both cosmogenic and top-down models. At present upper limits from many detectors are close to the cascade upper limit, and 5 yr IceCube upper limit will be well below it.
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1) at Earth at 3 sigma C.L. Indeed, with the recently-released 3-year data, that flavor composition is excluded at 92% C.L. The best-fit is obtained for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
102 - Tianlu Yuan 2019
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. Their transmission probability is modulated by the neutrino interaction cross section and affects the arrival flux at the IceCube Neutrin o Observatory, a cubic-kilometer neutrino detector embedded in the South Pole ice sheet. We present a measurement of the neutrino-nucleon cross section between 60 TeV--10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of data.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا