ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube

103   0   0.0 ( 0 )
 نشر من قبل Tianlu Yuan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tianlu Yuan




اسأل ChatGPT حول البحث

The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. Their transmission probability is modulated by the neutrino interaction cross section and affects the arrival flux at the IceCube Neutrino Observatory, a cubic-kilometer neutrino detector embedded in the South Pole ice sheet. We present a measurement of the neutrino-nucleon cross section between 60 TeV--10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of data.

قيم البحث

اقرأ أيضاً

The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. The interaction rate is modulated by the neutrino interaction cross section and affects the flux arriving at the IceCube Neutrino Observa tory, a cubic-kilometer neutrino detector embedded in the Antarctic ice sheet. We present a measurement of the neutrino cross section between 60 TeV and 10 PeV using the high-energy starting events (HESE) sample from IceCube with 7.5 years of data. The result is binned in neutrino energy and obtained using both Bayesian and frequentist statistics. We find it compatible with predictions from the Standard Model. Flavor information is explicitly included through updated morphology classifiers, proxies for the the three neutrino flavors. This is the first such measurement to use the three morphologies as observables and the first to account for neutrinos from tau decay.
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1) at Earth at 3 sigma C.L. Indeed, with the recently-released 3-year data, that flavor composition is excluded at 92% C.L. The best-fit is obtained for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.
149 - S. Robertson 2021
The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interact ions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the $ u_mu$ absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity.
Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regi me (TeV-PeV) is becoming more important now, as several experiments worldwide are going to observe processes involving such UHE neutrinos. In this work, we present new results on neutrino-nucleon cross-sections in this UHE regime, using QCD.
The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple paramet rization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا