ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature distribution of a non-flaring active region from simultaneous Hinode XRT and EIS observations

77   0   0.0 ( 0 )
 نشر من قبل Paola Testa
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paola Testa




اسأل ChatGPT حول البحث

We analyze coordinated Hinode XRT and EIS observations of a non-flaring active region to investigate the thermal properties of coronal plasma taking advantage of the complementary diagnostics provided by the two instruments. In particular we want to explore the presence of hot plasma in non-flaring regions. Independent temperature analyses from the XRT multi-filter dataset, and the EIS spectra, including the instrument entire wavelength range, provide a cross-check of the different temperature diagnostics techniques applicable to broad-band and spectral data respectively, and insights into cross-calibration of the two instruments. The emission measure distribution, EM(T), we derive from the two datasets have similar width and peak temperature, but show a systematic shift of the absolute values, the EIS EM(T) being smaller than XRT EM(T) by approximately a factor 2. We explore possible causes of this discrepancy, and we discuss the influence of the assumptions for the plasma element abundances. Specifically, we find that the disagreement between the results from the two instruments is significantly mitigated by assuming chemical composition closer to the solar photospheric composition rather than the often adopted coronal composition (Feldman 1992). We find that the data do not provide conclusive evidence on the high temperature (log T[K] >~ 6.5) tail of the plasma temperature distribution, however, suggesting its presence to a level in agreement with recent findings for other non-flaring regions.

قيم البحث

اقرأ أيضاً

Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extre me-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec-2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young et al. (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4-5 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s$^{-1}$ is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.
We use coronal imaging observations with SDO/AIA, and Hinode/EIS spectral data, to explore the potential of narrow band EUV imaging data for diagnosing the presence of hot (T >~5MK) coronal plasma in active regions. We analyze observations of two act ive regions (AR 11281, AR 11289) with simultaneous AIA imaging, and EIS spectral data, including the CaXVII line (at 192.8A) which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful coalignment of the imaging and spectral data, we compare the morphology in a 3 color image combining the 171, 335, and 94A AIA spectral bands, with the image obtained for CaXVII emission from the analysis of EIS spectra. We find that in the selected active regions the CaXVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94A (and 335A) AIA channels and weak in the 171A band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.
The origin of the slow solar wind is still an open issue. It has been suggested that upflows at the edge of active regions (AR) can contribute to the slow solar wind. Here, we compared the upflow region and the AR core and studied how the plasma prop erties change from the chromosphere via the transition region to the corona. We studied limb-to-limb observations NOAA 12687 (14th - 25th Nov 2017). We analysed spectroscopic data simultaneously obtained from IRIS and Hinode/EIS in six spectral lines. We studied the mutual relationships between the plasma properties for each emission line, as well as comparing the plasma properties between the neighbouring formation temperature lines. To find the most characteristic spectra, we classified the spectra in each wavelength using the machine learning technique k-means. We found that in the upflow region the Doppler velocities of the coronal lines are strongly correlated, but the transition region and coronal lines show no correlation. However, their fluxes are strongly correlated. The upflow region has lower density and lower temperature than the AR core. In the upflow region, the Doppler and non-thermal velocity show a strong correlation in the coronal lines, but the correlation is not seen in the AR core. At the boundary between the upflow region and the AR core, the upflow region shows an increase in the coronal non-thermal velocity, the emission obtained from the DEM, and the domination of the redshifted regions in the chromosphere. The obtained results suggest that at least three parallel mechanisms generate the plasma upflow: (1) the reconnection between closed loops and open magnetic field lines in the lower corona or upper chromosphere; (2) the reconnection between the chromospheric small-scale loops and open magnetic field; (3) the expansion of the magnetic field lines that allows the chromospheric plasma to escape to the solar corona.
It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Suns hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate . We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using MonteCarlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.
NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflares impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about $2.5 times 10^{25}$ erg s$^{-1}$. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of $delta ge 7$ with a low energy cut-off $E_{c} lesssim 7$ keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا