ترغب بنشر مسار تعليمي؟ اضغط هنا

Widespread nanoflare variability detected with Hinode/XRT in a solar active region

328   0   0.0 ( 0 )
 نشر من قبل Sergio Terzo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Suns hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate. We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using MonteCarlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.



قيم البحث

اقرأ أيضاً

209 - S.Terzo , F.Reale , M.Miceli 2012
The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to d etect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.
NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflares impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about $2.5 times 10^{25}$ erg s$^{-1}$. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of $delta ge 7$ with a low energy cut-off $E_{c} lesssim 7$ keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.
133 - Paola Testa 2010
We analyze coordinated Hinode XRT and EIS observations of a non-flaring active region to investigate the thermal properties of coronal plasma taking advantage of the complementary diagnostics provided by the two instruments. In particular we want to explore the presence of hot plasma in non-flaring regions. Independent temperature analyses from the XRT multi-filter dataset, and the EIS spectra, including the instrument entire wavelength range, provide a cross-check of the different temperature diagnostics techniques applicable to broad-band and spectral data respectively, and insights into cross-calibration of the two instruments. The emission measure distribution, EM(T), we derive from the two datasets have similar width and peak temperature, but show a systematic shift of the absolute values, the EIS EM(T) being smaller than XRT EM(T) by approximately a factor 2. We explore possible causes of this discrepancy, and we discuss the influence of the assumptions for the plasma element abundances. Specifically, we find that the disagreement between the results from the two instruments is significantly mitigated by assuming chemical composition closer to the solar photospheric composition rather than the often adopted coronal composition (Feldman 1992). We find that the data do not provide conclusive evidence on the high temperature (log T[K] >~ 6.5) tail of the plasma temperature distribution, however, suggesting its presence to a level in agreement with recent findings for other non-flaring regions.
This paper investigates a quiescent (non-flaring) active region observed on July 13, 2010 in EUV, SXR, and HXRs to search for a hot component that is speculated to be a key signature of coronal heating. We use a combination of RHESSI imaging and long -duration time integration (up to 40 min) to detect the active regions in the 3-8 keV range during apparently non-flaring times. The RHESSI imaging reveals a hot component that originates from the entire active region, as speculated for a nanoflare scenario where the entire active region is filled with a large number of unresolved small energy releases. An isothermal fit to the RHESSI data gives temperatures around ~7 MK with emission measure of several times 10^46 cm^-3. Adding EUV and SXR observations taken by AIA and XRT, respectively, we derive a differential emission measure (DEM) that shows a peak between 2 and 3 MK with a steeply decreasing high-temperature tail, similar to what has been previously reported. The derived DEM reveals that a wide range of temperatures contributes to the RHESSI flux (e.g. 40 % of the 4 keV emission being produced by plasma below 5 MK, while emission at 7 keV is almost exclusively from plasmas above 5 MK) indicating that the RHESSI spectrum should not be fitted with an isothermal. The hot component has a rather small emission measure (~0.1 % of the total EM is above 5 MK), and the derived thermal energy content is of the order of 10 % for a filling factor of unity, or potentially below 1 % for smaller filling factors.
In this paper we study the soft X-ray (SXR) signatures of one particular prominence. The X-ray observations used here were made by the Hinode/XRT instrument using two different filters. Both of them have a pronounced peak of the response function aro und 10 A. One of them has a secondary smaller peak around 170 A, which leads to a contamination of SXR images. The observed darkening in both of these filters has a very large vertical extension. The position and shape of the darkening corresponds nicely with the prominence structure seen in SDO/AIA images. First we have investigated the possibility that the darkening is caused by X-ray absorption. But detailed calculations of the optical thickness in this spectral range show clearly that this effect is completely negligible. Therefore the alternative is the presence of an extended region with a large emissivity deficit which can be caused by the presence of cool prominence plasmas within otherwise hot corona. To reproduce the observed darkening one needs a very large extension along the line-of-sight of the region amounting to around 10$^5$ km. We interpret this region as the prominence spine, which is also consistent with SDO/AIA observations in EUV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا