ترغب بنشر مسار تعليمي؟ اضغط هنا

Microflare Heating of a Solar Active Region Observed with NuSTAR, Hinode/XRT, and SDO/AIA

319   0   0.0 ( 0 )
 نشر من قبل Paul Wright
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April 29 at ~11:29 UT. This microflare shows heating of material to several million Kelvin, observed in Soft X-rays (SXRs) with Hinode/XRT, and was faintly visible in Extreme Ultraviolet (EUV) with SDO/AIA. For three of the four NuSTAR observations of this region (pre-, decay, and post phases) the spectrum is well fitted by a single thermal model of 3.2-3.5 MK, but the spectrum during the impulsive phase shows additional emission up to 10 MK, emission equivalent to A0.1 GOES class. We recover the differential emission measure (DEM) using SDO/AIA, Hinode/XRT, and NuSTAR, giving unprecedented coverage in temperature. We find the pre-flare DEM peaks at ~3 MK and falls off sharply by 5 MK; but during the microflares impulsive phase the emission above 3 MK is brighter and extends to 10 MK, giving a heating rate of about $2.5 times 10^{25}$ erg s$^{-1}$. As the NuSTAR spectrum is purely thermal we determined upper-limits on the possible non-thermal bremsstrahlung emission. We find that for the accelerated electrons to be the source of the heating requires a power-law spectrum of $delta ge 7$ with a low energy cut-off $E_{c} lesssim 7$ keV. In summary, this first NuSTAR microflare strongly resembles much more powerful flares.

قيم البحث

اقرأ أيضاً

We present X-ray imaging spectroscopy of one of the weakest active region (AR) microflares ever studied. The microflare occurred at $sim$11:04 UT on 2018 September 9 and we studied it using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the S olar Dynamic Observatorys Atmospheric Imaging Assembly (SDO/AIA). The microflare is observed clearly in 2.5-7 keV with NuSTAR and in Fe XVIII emission derived from the hotter component of the 94 $unicode{x212B}$ SDO/AIA channel. We estimate the event to be three orders of magnitude lower than a GOES A class microflare with an energy of 1.1$times$10$^{26}$ erg. It reaches temperatures of 6.7 MK with an emission measure of 8.0$times$10$^{43}$ cm$^{-3}$. Non-thermal emission is not detected but we instead determine upper limits to such emission. We present the lowest thermal energy estimate for an AR microflare in literature, which is at the lower limits of what is still considered an X-ray microflare.
It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Suns hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate . We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using MonteCarlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.
We present a study of the frequency of transient brightenings in the core of solar active regions as observed in the Fe XVIII line component of AIA/SDO 94 A filter images. The Fe XVIII emission is isolated using an empirical correction to remove the contribution of warm emission to this channel. Comparing with simultaneous observations from EIS/Hinode, we find that the variability observed in Fe XVIII is strongly correlated with the emission from lines formed at similar temperatures. We examine the evolution of loops in the cores of active regions at various stages of evolution. Using a newly developed event detection algorithm we characterize the distribution of event frequency, duration, and magnitude in these active regions. These distributions are similar for regions of similar age and show a consistent pattern as the regions age. This suggests that these characteristics are important constraints for models of solar active regions. We find that the typical frequency of the intensity fluctuations is about 1400s for any given line-of-sight, i.e. about 2-3 events per hour. Using the EBTEL 0D hydrodynamic model, however, we show that this only sets a lower limit on the heating frequency along that line-of-sight.
We report the detection of emission from a non-thermal electron distribution in a small solar microflare (GOES class A5.7) observed by the Nuclear Spectroscopic Telescope Array (NuSTAR), with supporting observation by the Reuven Ramaty High Energy So lar Spectroscopic Imager (RHESSI). The flaring plasma is well accounted for by a thick-target model of accelerated electrons collisionally thermalizing within the loop, akin to the coronal thick target behavior occasionally observed in larger flares. This is the first positive detection of non-thermal hard X-rays from the Sun using a direct imager (as opposed to indirectly imaging instruments). The accelerated electron distribution has a spectral index of 6.3 +/- 0.7, extends down to at least 6.5 keV, and deposits energy at a rate of ~2x1027 erg/s, heating the flare loop to at least 10 MK. The existence of dominant non-thermal emission in X-rays down to <5 keV means that RHESSI emission is almost entirely non-thermal, contrary to what is usually assumed in RHESSI spectroscopy. The ratio of non-thermal to thermal energies is similar to that of large flares, in contrast to what has been found in previous studies of small RHESSI flares. We suggest that a coronal thick target may be a common property of many small microflares based on the average electron energy and collisional mean free path. Future observations of this kind will enable understanding of how flare particle acceleration changes across energy scales, and will aid the push toward the observational regime of nanoflares, which are a possible source of significant coronal heating.
We present plasma diagnostics of an EIT wave observed with high cadence in Hinode/EIS sit-and-stare spectroscopy and SDO/AIA imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe dow nward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T ~ 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km/s. These red-shifts are followed by blue-shifts with upward velocities up to -5 km/s indicating relaxation of the plasma behind the wave front. During the wave evolution, the downward velocity pulse steepens from a few km/s up to 20 km/s and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS XIII 202/203 AA line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no Halpha Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a ~ -540 m/s2 and a start velocity of v0 ~ 590 km/s. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا