ﻻ يوجد ملخص باللغة العربية
High index optical waveguide devices such as slab waveguides, strip waveguides and fibers play extremely important roles in a wide range of modern applications including telecommunications, sensing, lasing, interferometry, and resonant amplification. Yet, transposing these advantageous applications from optics to acoustics remains a fundamental practical challenge, since most materials exhibit refractive indices lower than that of air for sound waves. Here, we demonstrate the relevance of acoustic metamaterials for tackling this pivotal problem. More specifically, we consider a metamaterial built from subwavelength air-filled acoustic pipes engineered to effectively exhibit a higher refractive index than homogenous air. We show that such medium can be employed to realize acoustic equivalents of dielectric slab or strip waveguides, and optical fibers. Unlike conventional acoustic pipes, our guiding approach allows the waveguide to remain open to the external medium, which opens a plethora of new opportunities in noise management, medical imaging, underwater communication systems, and sensing.
The recent breakthrough in metamaterial-based optical computing devices [Science 343, 160 (2014)] has inspired a quest for similar systems in acoustics, performing mathematical operations on sound waves. So far, acoustic analog computing has been dem
We numerically model key building blocks of a phononic integrated circuit that enable phonon routing in high-acoustic-index waveguides. Our particular focus is on Gallium Nitride-on-sapphire phononic platform which has recently demonstrated high acou
Optical isolators and circulators are indispensable for photonic integrated circuits (PICs). Despite of significant progress in silicon-on-insulator (SOI) platforms, integrated optical isolators and circulators have been rarely reported on silicon ni
By offering effective modal volumes significantly less than a cubic wavelength, slot-waveguide cavities offer a new in-road into strong atom-photon coupling in the visible regime. Here we explore two-dimensional arrays of coupled slot cavities which
The coherent manipulation of acoustic waves on the nanoscale usually requires multilayers with thicknesses and interface roughness defined down to the atomic monolayer. This results in expensive devices with predetermined functionality. Nanoscale mes