ﻻ يوجد ملخص باللغة العربية
Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that the transmission coefficient is given by a sum over all discrete eigenstates without a background integral. An apparent background is in fact not a background but generated by tails of various resonance peaks. By using the expression, we will show that the Fano asymmetry of a resonance peak is caused by the interference between various discrete eigenstates. In particular, an unstable resonance can strongly skew the peak of a nearby resonance.
We analyze an open quantum system under the influence of more than one environment: a dephasing bath and a probability-absorbing bath that represents a decay channel, as encountered in many models of quantum networks. In our case, dephasing is modele
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law
A general analytic form of the full 6x6 dyadic Greens function of a spherically symmetric open optical system is presented, with an explicit solution provided for a homogeneous sphere in vacuum. Different spectral representations of the Greens functi
The resonant state expansion (RSE), a novel perturbation theory of Brillouin-Wigner type developed in electrodynamics [Muljarov, Langbein, and Zimmermann, Europhys. Lett., 92, 50010(2010)], is applied to planar, effectively one-dimensional optical sy
A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross-sections of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented. The method is based on t