ترغب بنشر مسار تعليمي؟ اضغط هنا

Full electromagnetic Greens dyadic of spherically symmetric open optical systems and elimination of static modes from the resonant-state expansion

105   0   0.0 ( 0 )
 نشر من قبل Egor Muljarov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. A. Muljarov




اسأل ChatGPT حول البحث

A general analytic form of the full 6x6 dyadic Greens function of a spherically symmetric open optical system is presented, with an explicit solution provided for a homogeneous sphere in vacuum. Different spectral representations of the Greens function are derived using the Mittag-Leffler theorem, and their convergence to the exact solution is analyzed, allowing us to select optimal representations. Based on them, more efficie



قيم البحث

اقرأ أيضاً

We present two alternative complete sets of static modes of a homogeneous dielectric sphere, for their use in the resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics. Physically, these modes are needed to correctly descr ibe the static electric field of a charge redistribution within the optical system due to a perturbation of the permittivity. We demonstrate the convergence of the RSE towards the exact result for a perturbation describing a size reduction of the basis sphere. We then revisit the quarter-sphere perturbation treated in [Doost {it et al.}, Phys. Rev. A {bf 90}, 013834 (2014)], where only a single static mode per each angular momentum was introduced, and show that using a complete set of static modes leads to a small, though non-negligible correction of the RSE result, improving the agreement with finite-element simulations. As another example of applying the RSE with a complete set of static modes, we calculate the resonant states of a dielectric cylinder, also comparing the result with a finite-element simulation.
124 - M.B. Doost , W. Langbein , 2011
The resonant state expansion (RSE), a novel perturbation theory of Brillouin-Wigner type developed in electrodynamics [Muljarov, Langbein, and Zimmermann, Europhys. Lett., 92, 50010(2010)], is applied to planar, effectively one-dimensional optical sy stems, such as layered dielectric slabs and Bragg reflector microcavities. It is demonstrated that the RSE converges with a power law in the basis size. Algorithms for error estimation and their reduction by extrapolation are presented and evaluated. Complex eigenfrequencies, electro-magnetic fields, and the Greens function of a selection of optical systems are calculated, as well as the observable transmission spectra. In particular we find that for a Bragg-mirror microcavity, which has sharp resonances in the spectrum, the transmission calculated using the resonant state expansion reproduces the result of the transfer/scattering matrix method.
Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that the transmission coefficient is given by a sum over all discrete eigenstates without a background integral. An apparent background is in fact not a background but generated by tails of various resonance peaks. By using the expression, we will show that the Fano asymmetry of a resonance peak is caused by the interference between various discrete eigenstates. In particular, an unstable resonance can strongly skew the peak of a nearby resonance.
A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross-sections of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented. The method is based on t he expansion of the Greens function into the resonant states of the system. These can be calculated by any means, including the popular finite element and finite-difference time-domain methods. However, using the resonant-state expansion with a spherically-symmetric analytical basis, such as that of a homogeneous sphere, allows to determine a complete set of the resonant states of the system within a given frequency range. Furthermore, it enables to take full advantage of the expansion of the field outside the system into vector spherical harmonics, resulting in simple analytic expressions. We verify and illustrate the developed approach on an example of a dielectric sphere in vacuum, which has an exact analytic solution known as Mie scattering.
156 - M.B. Doost , W. Langbein , 2014
The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Greens function. We demonstrate the validity of the RSE for TM modes by verifying its convergence towards the exact result for a homogeneous perturbation of the sphere. We then apply the RSE to calculate the modes for a selection of perturbations sequentially reducing the remaining symmetry, given by a change of the dielectric constant of half-sphere and quarter-sphere shape. Since no exact solutions are known for these perturbations, we verify the RSE results by comparing them with the results of state of the art finite element method (FEM) and finite difference in time domain (FDTD) solvers. We find that for the selected perturbations, the RSE provides a significantly higher accuracy than the FEM and FDTD for a given computational effort, demonstrating its potential to supersede presently used methods. We furthermore show that in contrast to presently used methods, the RSE is able to determine the perturbation of a selected group of modes by using a limited basis local to these modes, which can further reduce the computational effort by orders of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا