ﻻ يوجد ملخص باللغة العربية
High-resolution spectrometer measurements of the reaction H(e,e K+)X at small Q2 are used to extract the mass and width of the Lambda(1520). We investigate dependence of the resonance parameters on different parametrizations of the background and the resonance peak itself. Our final values for the Breit-Wigner parameters are M=1520.4+-0.6(stat)+-1.5(syst) MeV and Gamma=18.6+-1.9(stat)+-1(syst) MeV. The width appears to be more sensitive to the assumptions than the mass. We also estimate, for the first time, the pole position for this resonance and find that both the pole mass and width seem to be smaller than their Breit-Wigner values.
Background: In $pi^+n$ and $pi^-p$ electroproduction, conventional models cannot satisfactory explain the data above the resonance region, in particular the transverse cross section. Although no high-energy L-T-separated cross-section data is availab
Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found
We report on the measurement of spin density matrix elements of the $Lambda(1520)$ in the photoproduction reaction $gamma prightarrow Lambda(1520)K^+$, via its subsequent decay to $K^{-}p$. The measurement was performed as part of the GlueX experimen
[Background] Above the nucleon resonance region, the $N(e,epi^pm)N$ data cannot be explained by conventional hadronic models. For example, the observed magnitude of the transverse cross section is significantly underestimated in a framework with Regg
We present the first lattice-QCD calculation of the form factors governing the charm-baryon semileptonic decays $Lambda_c to Lambda^*(1520)ell^+ u_ell$. As in our previous calculation of the $Lambda_b to Lambda^*(1520)$ form factors, we work in the $