ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged pion electroproduction above the resonance region

462   0   0.0 ( 0 )
 نشر من قبل Tom Vrancx
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

[Background] Above the nucleon resonance region, the $N(e,epi^pm)N$ data cannot be explained by conventional hadronic models. For example, the observed magnitude of the transverse cross section is significantly underestimated in a framework with Reggeized background amplitudes. [Purpose] Develop a phenomenological framework for the $N(e,epi^pm)N$ reaction at high invariant mass $W$ and deep photon virtuality $Q^2$. [Method] Building on the work of Kaskulov and Mosel, a gauged pion-exchange current is introduced with a running cutoff energy for the proton electromagnetic transition form factor. A new transition form factor is proposed. It respects the correct on-shell limit, has a simple physical interpretation and reduces the number of free parameters by one. [Results] A study of the $W$ dependence of the $N(e,epi^pm)N$ lends support for the newly proposed transition form factor. In addition, an improved description of the separated and unseparated cross sections at $-t lesssim 0.5 ;text{GeV}^2$ is obtained. The predictions overshoot the measured unseparated cross sections for $-t > 0.5 ;text{GeV}^2$. Introducing a strong hadronic form factor in the Reggeized background amplitudes brings the calculations considerably closer to the high $-t$ data. [Conclusions] Hadronic models corrected for resonance/parton duality describe the separated pion electroproduction cross sections above the resonance region reasonably well at low $-t$. In order to validate the applicability of these models at high $-t$, separated cross sections are needed. These are expected to provide a more profound insight into the relevant reaction mechanisms.



قيم البحث

اقرأ أيضاً

Background: In $pi^+n$ and $pi^-p$ electroproduction, conventional models cannot satisfactory explain the data above the resonance region, in particular the transverse cross section. Although no high-energy L-T-separated cross-section data is availab le to date, a similar scenario can be inferred for $K^+Lambda$ electroproduction. Purpose: Develop a phenomenological model for the $p(gamma^*,K^+)Lambda$ reaction at forward angles and high-energies. Propose a universal framework for interpreting charged-kaon and charged-pion electroproduction above the resonance region. Method: Guided by the recent model for charged-pion electroproduction, developed by the authors, a framework for $K^+Lambda$ electroproduction at high energies and forward angles is constructed. To this end, a Reggeized background model for $K^+Lambda$ photoproduction is first developed. This model is used as a starting base to set up an electroproduction framework. Results: The few available data of the unseparated $p(gamma^*,K^+)Lambda$ cross section are well explained by the model. Predictions for the L-T-separation experiment planned with the 12 GeV upgrade at Jefferson Lab are given. The newly-proposed framework predicts an increased magnitude for the transverse structure function, similar to the situation in charged-pion electroproduction. Conclusions: Within a hadronic framework featuring Reggeized background amplitudes, $s$-channel resonance-parton effects can explain the observed magnitude of the unseparated $p(gamma^*,K^+)Lambda$ cross section at high energies and forward angles. Thereby, no hardening of the kaon electromagnetic form factor is required.
Parity violating (PV) contributions due to interference between $gamma$ and $Z^0$ exchange are calculated for pion electroproduction off the nucleon. A phenomenological model with effective Lagrangians is used to determine the resulting asymmetry for the energy region between threshold and $Delta(1232)$ resonance. The $Delta$ resonance is treated as a Rarita-Schwinger field with phenomenological $N Delta$ transition currents. The background contributions are given by the usual Born terms using the pseudovector $pi N$ Lagrangian. Numerical results for the asymmetry are presented.
138 - G. Laveissi`ere 2008
We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,ep)gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,ep)gamma$ to H$(e,ep)pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest $W$ (1.8-1.9 GeV) show a striking $Q^2$- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.
We discuss the extended on-mass-shell scheme for manifestly Lorentz-invariant baryon chiral perturbation theory. We present a calculation of pion photo- and electroproduction up to and including order $q^4$. The low-energy constants have been fixed b y fitting experimental data in all available reaction channels. Our results can be accessed via a web interface, the so-called chiral MAID (http://www.kph.uni-mainz.de/MAID/chiralmaid/).
A model based on the hadronic fluctuations of the real photon is developed to describe the total photonucleon and photonuclear cross sections in the energy region above the nucleon resonances. The hadronic spectral function of the photon is derived i ncluding the finite width of vector-meson resonances and the quark-antiquark continuum. The shadowing effect is evaluated considering the effective interaction of the hadronic component with the bound nucleons within a Glauber-Gribov multiple scattering theory. The low energy onset of the shadowing effect is interpreted as a possible signature of a modification of the hadronic spectral function in the nuclear medium. A decrease of the $rho$-meson mass in nuclei is suggested for a better explanation of the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا