ﻻ يوجد ملخص باللغة العربية
Background: In $pi^+n$ and $pi^-p$ electroproduction, conventional models cannot satisfactory explain the data above the resonance region, in particular the transverse cross section. Although no high-energy L-T-separated cross-section data is available to date, a similar scenario can be inferred for $K^+Lambda$ electroproduction. Purpose: Develop a phenomenological model for the $p(gamma^*,K^+)Lambda$ reaction at forward angles and high-energies. Propose a universal framework for interpreting charged-kaon and charged-pion electroproduction above the resonance region. Method: Guided by the recent model for charged-pion electroproduction, developed by the authors, a framework for $K^+Lambda$ electroproduction at high energies and forward angles is constructed. To this end, a Reggeized background model for $K^+Lambda$ photoproduction is first developed. This model is used as a starting base to set up an electroproduction framework. Results: The few available data of the unseparated $p(gamma^*,K^+)Lambda$ cross section are well explained by the model. Predictions for the L-T-separation experiment planned with the 12 GeV upgrade at Jefferson Lab are given. The newly-proposed framework predicts an increased magnitude for the transverse structure function, similar to the situation in charged-pion electroproduction. Conclusions: Within a hadronic framework featuring Reggeized background amplitudes, $s$-channel resonance-parton effects can explain the observed magnitude of the unseparated $p(gamma^*,K^+)Lambda$ cross section at high energies and forward angles. Thereby, no hardening of the kaon electromagnetic form factor is required.
[Background] Above the nucleon resonance region, the $N(e,epi^pm)N$ data cannot be explained by conventional hadronic models. For example, the observed magnitude of the transverse cross section is significantly underestimated in a framework with Regg
A model based on the hadronic fluctuations of the real photon is developed to describe the total photonucleon and photonuclear cross sections in the energy region above the nucleon resonances. The hadronic spectral function of the photon is derived i
High-resolution spectrometer measurements of the reaction H(e,e K+)X at small Q2 are used to extract the mass and width of the Lambda(1520). We investigate dependence of the resonance parameters on different parametrizations of the background and the
A Bayesian analysis of the worlds p(gamma,K+)Lambda data is presented. We adopt a Regge-plus-resonance framework featuring consistent couplings for nucleon resonances up to spin J=5/2, and evaluate 2048 model variants considering all possible combina
A Bayesian analysis of the worlds p(gamma,K^+)Lambda data is presented. From the proposed selection of 11 resonances, we find that the following nucleon resonances have the highest probability of contributing to the reaction: S11(1535), S11(1650), F1