ترغب بنشر مسار تعليمي؟ اضغط هنا

Suprathermal viscosity of dense matter

118   0   0.0 ( 0 )
 نشر من قبل Simin Mahmoodifar
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Mark G. Alford




اسأل ChatGPT حول البحث

Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation mu_Delta of the chemical potentials from chemical equilibrium fulfills mu_Delta > T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.



قيم البحث

اقرأ أيضاً

A short review of the two recently analyzed collective effects in dense non-Abelian matter, the photon and dilepton production in nonequilibrium glasma and polarization properties of turbulent Abelian and non-Abelian plasmas, is given.
188 - O. Soloveva , P. Moreau , L. Oliva 2019
We present calculations for the shear viscosity of the hot and dense quark-gluon plasma (QGP) using the partonic scattering cross sections as a function of temperature $T$ and baryon chemical potential $mu_B$ from the dynamical quasiparticle model (D QPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. To this aim we calculate the collisional widths for the partonic degrees of freedom at finite $T$ and $mu_B$ in the time-like sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio of shear viscosity $eta$ over entropy density $s$, i.e. $eta/s$, is evaluated using these collisional widths and are compared to lQCD calculations for $mu_B$ = 0 as well. We find that the ratio $eta/s$ is in agreement with the results of calculations within the original DQPM on the basis of the Kubo formalism. Furthermore, there is only a very modest change of $eta/s$ with the baryon chemical $mu_B$ as a function of the scaled temperature $T/T_c(mu_B)$.
We calculate two transport coefficients -- the shear viscosity over entropy ratio $eta/s$ and the ratio of the electric conductivity to the temperature $sigma_0/T$ -- of strongly interacting quark matter within the extended $N_f=3$ Polyakov Nambu-Jon a-Lasinio (PNJL) model along the crossover transition line for moderate values of baryon chemical potential $0 leq mu_B leq 0.9$ GeV as well as in the vicinity of the critical endpoint (CEP) and at large baryon chemical potential $mu_B=1.2$ GeV, where the first-order phase transition takes place. The evaluation of the transport coefficients is performed on the basis of the effective Boltzmann equation in the relaxation time approximation. We employ two different methods for the calculation of the quark relaxation times: i) using the averaged transition rate defined via thermal averaged quark-quark and quark-antiquark PNJL cross sections and ii) using the weighted thermal averaged quark-quark and quark-antiquark PNJL cross sections. The $eta/s$ and $sigma_0/T$ transport coefficients have a similar temperature and chemical potential behavior when approaching the chiral phase transition for the both methods for the quark relaxation time, however, the differences grow with increasing temperature. We demonstrate the effect of the first-order phase transition and of the CEP on the transport coefficients in the deconfined QCD medium.
Shear viscosity $eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective ove rdamped motion. In the frequent-collision regime, the shear viscosity depends on the particle-number density $n$ through the mean-field parameter $a$, which describes attractive forces in the VDW equation. In the temperature region $T=15 - 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5 - 1.5),n^{}_0$, where $n^{}_0=0.16,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $eta/sgg 1$ are, however, found in both the low-density, $nll n^{}_0$, and high-density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach inapplicable for these densities.
169 - S. Schramm , J. Steinheimer 2011
We present a general approach to incorporate hadronic as well as quark degrees of freedom in a unified approach. This approach implements the correct degrees of freedom at high as well as low temperatures and densities. An effective Polyakov loop fie ld serves as the order parameter for deconfinement. We employ a well-tested hadronic flavor-SU(3) model based on a chirally symmetric formulation that reproduces properties of ground state nuclear matter and yields good descriptions of nuclei and hypernuclei. Excluded volume effects simulating the finite size of the hadrons drive the transition to quarks at high temperatures and densities. We study the phase structure of the model and the transition to the quark gluon plasma and compare results to lattice gauge calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا