A short review of the two recently analyzed collective effects in dense non-Abelian matter, the photon and dilepton production in nonequilibrium glasma and polarization properties of turbulent Abelian and non-Abelian plasmas, is given.
Neutron star observations, including direct mass and radius measurements as well as the analysis of gravitational wave signals emitted by stellar mergers, provide valuable and unique insights into the properties of strongly interacting matter at high
densities. In this proceedings contribution, I review recent efforts to systematically constrain the equation of state (EoS) of dense nuclear and quark matter using a combination of ab initio particle and nuclear physics calculations and astrophysical data. In particular, I discuss the constraints that the gravitational wave observation GW170817 has placed on the EoS, and comment on the future prospects of improving the accuracy, to which this quantity is known.
Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation mu_Delta of the c
hemical potentials from chemical equilibrium fulfills mu_Delta > T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.
We present calculations for the shear viscosity of the hot and dense quark-gluon plasma (QGP) using the partonic scattering cross sections as a function of temperature $T$ and baryon chemical potential $mu_B$ from the dynamical quasiparticle model (D
QPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. To this aim we calculate the collisional widths for the partonic degrees of freedom at finite $T$ and $mu_B$ in the time-like sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio of shear viscosity $eta$ over entropy density $s$, i.e. $eta/s$, is evaluated using these collisional widths and are compared to lQCD calculations for $mu_B$ = 0 as well. We find that the ratio $eta/s$ is in agreement with the results of calculations within the original DQPM on the basis of the Kubo formalism. Furthermore, there is only a very modest change of $eta/s$ with the baryon chemical $mu_B$ as a function of the scaled temperature $T/T_c(mu_B)$.
Various thermodynamic quantities and the phase diagram of strongly interacting hot and dense magnetized quark matter are obtained with the $ 2 $-flavour Nambu-Jona-Lasinio model with Polyakov loop considering finite values of the anomalous magnetic m
oment (AMM) of the quarks. Susceptibilities associated with constituent quark mass and traced Polyakov loop are used to evaluate chiral and deconfinement transition temperatures. It is found that, inclusion of the AMM of the quarks in presence of the background magnetic field results in a substantial decrease in the chiral as well as deconfinement transition temperatures in contrast to an enhancement in the chiral transition temperature in its absence. Using standard techniques of finite temperature field theory, the two point thermo-magnetic mesonic correlation functions in the scalar ($sigma$) and neutral pseudoscalar ($pi^0$) channels are evaluated to calculate the masses of $sigma $ and $ pi^0 $ considering the AMM of the quarks.
Effects of the in-medium modifications of nucleon form factors on neutrino interaction in dense matter are presented by considering both the weak and electromagnetic interactions of neutrinos with the constituents of the matter. A relativistic mean f
ield and the quark-meson coupling models are respectively adopted for the effective nucleon mass and in-medium nucleon form factors. We calculate the cross-section of neutrino scattering as well as the neutrino mean free path. We found the cross sections of neutrino scattering in cold nuclear medium decreases when the in-medium modifications of the nucleon weak and electromagnetic form factors are taken into account.This reduction results in the enhancement of the neutrino mean free path, in particular at the baryon density of around a few times of the normal nuclear matter density.