ﻻ يوجد ملخص باللغة العربية
We present calculations for the shear viscosity of the hot and dense quark-gluon plasma (QGP) using the partonic scattering cross sections as a function of temperature $T$ and baryon chemical potential $mu_B$ from the dynamical quasiparticle model (DQPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. To this aim we calculate the collisional widths for the partonic degrees of freedom at finite $T$ and $mu_B$ in the time-like sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio of shear viscosity $eta$ over entropy density $s$, i.e. $eta/s$, is evaluated using these collisional widths and are compared to lQCD calculations for $mu_B$ = 0 as well. We find that the ratio $eta/s$ is in agreement with the results of calculations within the original DQPM on the basis of the Kubo formalism. Furthermore, there is only a very modest change of $eta/s$ with the baryon chemical $mu_B$ as a function of the scaled temperature $T/T_c(mu_B)$.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t
We present a general approach to incorporate hadronic as well as quark degrees of freedom in a unified approach. This approach implements the correct degrees of freedom at high as well as low temperatures and densities. An effective Polyakov loop fie
We report on broadly based systematic investigations of the modeling components for open heavy-flavor diffusion and energy loss in strongly interacting matter in their application to heavy-flavor observables in high-energy heavy-ion collisions, condu
We calculate transport coefficients of the quark-gluon plasma (QGP) within the dynamical quasiparticle model (DQPM) by explicitly computing the parton interaction rates as a function of temperature $T$ and baryon chemical potential $mu_B$ on the basi
Within the framework of a multi-phase transport model, we study the equation of state and pressure anisotropy of the hot dense matter produced in central relativistic heavy ion collisions. Both are found to depend on the hadronization scheme and scat