ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic $O(alpha_s^3)$ contributions to the DIS Heavy Flavor Wilson Coefficients at $Q^2 gg m^2$

135   0   0.0 ( 0 )
 نشر من قبل Johannes Bluemlein
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The logarithmic contributions to the massive twist-2 operator matrix elements for deep-inelastic scattering are calculated to $O(alpha_s^3)$for general values of the Mellin variable $N$.



قيم البحث

اقرأ أيضاً

We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2 gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the mass ive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-$N$ space and $z$-space.
In the asymptotic limit $Q^2 gg m^2$, the heavy flavor Wilson coefficients for deep--inelastic scattering factorize into the massless Wilson coefficients and the universal heavy flavor operator matrix elements resulting from light--cone expansion. In this way, one can calculate all but the power corrections in $(m^2/Q^2)^k, k > 0$. The heavy flavor operator matrix elements are known to ${sf NLO}$. We present the last 2--loop result missing in the unpolarized case for the renormalization at 3--loops and first 3--loop results for terms proportional to the color factor $T_F^2$ in Mellin--space. In this calculation, the corresponding parts of the ${sf NNLO}$ anomalous dimensions cite{LARIN,MVVandim} are obtained as well.
70 - J. Blumlein , V. Ravindran , 2003
The twist--2 heavy flavor contributions to the polarized structure function $g_2(x,Q^2)$ are calculated. We show that this part of $g_2(x,Q^2)$ is related to the heavy flavor contribution to $g_1(x,Q^2)$ by the Wandzura--Wilczek relation to all order s in the strong coupling constant. Numerical results are presented.
We calculate moments of the $O(alpha_s^3)$ heavy flavor contributions to the Wilson coefficients of the structure function $F_2(x,Q^2)$ in the region $Q^2gg m^2$. The massive Wilson coefficients are obtained as convolutions of massive operator ma trix elements (OMEs) and the known light flavor Wilson coefficients. The calculation of moments of the massive OMEs involves a first independent recalculation of moments of the fermionic contributions to all 3--loop anomalous dimensions of the unpolarized twist--2 local composite operators stemming from the light--cone expansion cite{url}.
We report on results for the heavy flavor contributions to $F_2(x,Q^2)$ in the limit $Q^2gg m^2$ at {sf NNLO}. By calculating the massive $3$--loop operator matrix elements, we account for all but the power suppressed terms in $m^2/Q^2$. Recently, th e calculation of fixed Mellin moments of all $3$--loop massive operator matrix elements has been finished. We present new all--$N$ results for the $O(n_f)$--terms, thereby confirming the corresponding parts of the $3$--loop anomalous dimensions. Additionally, we report on first genuine $3$--loop results of the ladder--type diagrams for general values of the Mellin variable $N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا