ترغب بنشر مسار تعليمي؟ اضغط هنا

Twist-2 Heavy Flavor Contributions to the Structure Function $g_2(x,Q^2)$

71   0   0.0 ( 0 )
 نشر من قبل Johannes Bluemlein
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The twist--2 heavy flavor contributions to the polarized structure function $g_2(x,Q^2)$ are calculated. We show that this part of $g_2(x,Q^2)$ is related to the heavy flavor contribution to $g_1(x,Q^2)$ by the Wandzura--Wilczek relation to all orders in the strong coupling constant. Numerical results are presented.



قيم البحث

اقرأ أيضاً

We calculate moments of the $O(alpha_s^3)$ heavy flavor contributions to the Wilson coefficients of the structure function $F_2(x,Q^2)$ in the region $Q^2gg m^2$. The massive Wilson coefficients are obtained as convolutions of massive operator ma trix elements (OMEs) and the known light flavor Wilson coefficients. The calculation of moments of the massive OMEs involves a first independent recalculation of moments of the fermionic contributions to all 3--loop anomalous dimensions of the unpolarized twist--2 local composite operators stemming from the light--cone expansion cite{url}.
We consider the effect of higher twist operators of the Wilson operator product expansion in the structure function $F_{2}(x,Q^{2})$ at small-$x$, taking into account QCD effective charges whose infrared behavior is constrained by a dynamical mass sc ale. The higher twist corrections are obtained from the renormalon formalism. Our analysis is performed within the conventional framework of next-to-leading order, with the factorization and renormalization scales chosen to be $Q^{2}$. The infrared properties of QCD are treated in the context of the generalized double-asymptotic-scaling approximation. We show that the corrections to $F_{2}$ associated with twist-four and twist-six are both necessary and sufficient for a good description of the deep infrared experimental data.
We derive a second-order linear differential equation for the leading order gluon distribution function G(x,Q^2) = xg(x,Q^2) which determines G(x,Q^2) directly from the proton structure function F_2^p(x,Q^2). This equation is derived from the leading order DGLAP evolution equation for F_2^p(x,Q^2), and does not require knowledge of either the individual quark distributions or the gluon evolution equation. Given an analytic expression that successfully reproduces the known experimental data for F_2^p(x,Q^2) in a domain x_min<=x<=x_max, Q_min^2<=Q^2<=Q_max^2 of the Bjorken variable x and the virtuality Q^2 in deep inelastic scattering, G(x,Q^2) is uniquely determined in the same domain. We give the general solution and illustrate the method using the recently proposed Froissart bound type parametrization of F_2^p(x,Q^2) of E. L. Berger, M. M. Block and C-I. Tan, PRL 98, 242001, (2007). Existing leading-order gluon distributions based on power-law description of individual parton distributions agree roughly with the new distributions for x>~10^-3 as they should, but are much larger for x<~10^-3.
We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contrib ution to the neutron $d_2$ matrix element, was found to be small at $<Q^2>$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا