ﻻ يوجد ملخص باللغة العربية
I show that the classical Hamilton-Jacobi (H-J) equation can be used as a technique to study quantum mechanical problems. I first show that the the Schrodinger equation is just the classical H-J equation, constrained by a condition that forces the solutions of the H-J equation to be everywhere $C^2$. That is, quantum mechanics is just classical mechanics constrained to ensure that ``God does not play dice with the universe. I show that this condition, which imposes global determinism, strongly suggests that $psi^*psi$ measures the density of universes in a multiverse. I show that this interpretation implies the Born Interpretation, and that the function space for $psi$ is larger than a Hilbert space, with plane waves automatically included. Finally, I use H-J theory to derive the momentum-position uncertainty relation, thus proving that in quantum mechanics, uncertainty arises from the interference of the other universes of the multiverse, not from some intrinsic indeterminism in nature.
We prove that a solution of the Schrodinger-type equation $mathrm{i}partial_t u= Hu$, where $H$ is a Jacobi operator with asymptotically constant coefficients, cannot decay too fast at two different times unless it is trivial.
We consider the following evolutionary Hamilton-Jacobi equation with initial condition: begin{equation*} begin{cases} partial_tu(x,t)+H(x,u(x,t),partial_xu(x,t))=0, u(x,0)=phi(x), end{cases} end{equation*} where $phi(x)in C(M,mathbb{R})$. Under some
In this paper, we study a stochastic recursive optimal control problem in which the value functional is defined by the solution of a backward stochastic differential equation (BSDE) under $tilde{G}$-expectation. Under standard assumptions, we establi
The Born Interpretation of the wave function gives only the relative frequencies as the number of observations approaches infinity. Using the Many-Worlds Interpretation of quantum mechanics, specifically the fact that there must exist oth
We study the quantum-mechanical uncertainty relation originating from the successive measurement of two observables $hat{A}$ and $hat{B}$, with eigenvalues $a_n$ and $b_m$, respectively, performed on the same system. We use an extension of the von Ne