ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dynamic Uncertainty Principle for Jacobi Operators

161   0   0.0 ( 0 )
 نشر من قبل Gerald Teschl
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that a solution of the Schrodinger-type equation $mathrm{i}partial_t u= Hu$, where $H$ is a Jacobi operator with asymptotically constant coefficients, cannot decay too fast at two different times unless it is trivial.



قيم البحث

اقرأ أيضاً

97 - Mahir Hadzic , Zhiwu Lin 2020
Upon specifying an equation of state, spherically symmetric steady states of the Einstein-Euler system are embedded in 1-parameter families of solutions, characterized by the value of their central redshift. In the 1960s Zeldovich [50] and Wheeler [2 2] formulated a turning point principle which states that the spectral stability can be exchanged to instability and vice versa only at the extrema of mass along the mass-radius curve. Moreover the bending orientation at the extrema determines whether a growing mode is gained or lost. We prove the turning point principle and provide a detailed description of the linearized dynamics. One of the corollaries of our result is that the number of growing modes grows to infinity as the central redshift increases to infinity.
We obtain new Faber-Krahn-type inequalities for certain perturbations of the Dirichlet Laplacian on a bounded domain. First, we establish a two- and three-dimensional Faber-Krahn inequality for the Schrodinger operator with point interaction: the opt imiser is the ball with the point interaction supported at its centre. Next, we establish three-dimensional Faber-Krahn inequalities for one- and two-body Schrodinger operator with attractive Coulomb interactions, the optimiser being given in terms of Coulomb attraction at the centre of the ball. The proofs of such results are based on symmetric decreasing rearrangement and Steiner rearrangement techniques; in the first model a careful analysis of certain monotonicity properties of the lowest eigenvalue is also needed.
The article discusses the following frequently arising question on the spectral structure of periodic operators of mathematical physics (e.g., Schroedinger, Maxwell, waveguide operators, etc.). Is it true that one can obtain the correct spectrum by u sing the values of the quasimomentum running over the boundary of the (reduced) Brillouin zone only, rather than the whole zone? Or, do the edges of the spectrum occur necessarily at the set of ``corner high symmetry points? This is known to be true in 1D, while no apparent reasons exist for this to be happening in higher dimensions. In many practical cases, though, this appears to be correct, which sometimes leads to the claims that this is always true. There seems to be no definite answer in the literature, and one encounters different opinions about this problem in the community. In this paper, starting with simple discrete graph operators, we construct a variety of convincing multiply-periodic examples showing that the spectral edges might occur deeply inside the Brillouin zone. On the other hand, it is also shown that in a ``generic case, the situation of spectral edges appearing at high symmetry points is stable under small perturbations. This explains to some degree why in many (maybe even most) practical cases the statement still holds.
We consider a smooth hyper-surface Z of a closed Riemannian manifold X. Let P be the Poisson operator associating to a smooth function on Z its harmonic extension on XZ. If A is a pseudo-differential operator on X of degree <3, we prove that B=P^* A P is a pseudo-differential operator on Z and calculate the principal symbol of B.
We study sufficient conditions for the absence of positive eigenvalues of magnetic Schrodinger operators in $mathbb{R}^d,, dgeq 2$. In our main result we prove the absence of eigenvalues above certain threshold energy which depends explicitly on the magnetic and electric field. A comparison with the examples of Miller--Simon shows that our result is sharp as far as the decay of the magnetic field is concerned. As applications, we describe several consequences of the main result for two-dimensional Pauli and Dirac operators, and two and three dimensional Aharonov--Bohm operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا