ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Energy Spectra in Active Regions

492   0   0.0 ( 0 )
 نشر من قبل Valentyna Abramenko
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data from {it SOHO}/MDI instrument recorded in the high resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs of higher flare productivity. We also report that both the power index, $alpha$, of the energy spectrum, $E(k) sim k^{-alpha}$, and the total spectral energy $W=int E(k)dk$ are comparably correlated with the flare index, $A$, of an active region. The correlations are found to be stronger than that found between the flare index and total unsigned flux. The flare index for an AR can be estimated based on measurements of $alpha$ and $W$ as $A=10^b (alpha W)^c$, with $b=-7.92 pm 0.58$ and $c=1.85 pm 0.13$. We found that the regime of the fully-developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display under-developed turbulence with strong magnetic dissipation at all scales.



قيم البحث

اقرأ أيضاً

We present results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from January 1997 until December 2006 are utilized. Data from the Michelson Doppler Imager (MDI) instrument on-board the {it Solar and Heliospheric Observatory} (SOHO) operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph and {it Hinode} SOT/SP instrument were used. Intermittency spectra were derived via high-order structure functions and flatness functions. The flatness function exponent is a measure of the degree of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated to the flare productivity (the correlation coefficient is - 0.63). {it Hinode} data show that the intermittency regime is extended toward the small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be more broad for ARs of highest flare productivity as compared to that of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. Strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.
124 - Hongqi Zhang 2013
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic re presentation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k^{-11/3} power law at large wavenumbers, which implies a k^{-5/3} spectrum for the modulus of the current helicity. A k^{-5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm^{-1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson-Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Suns disk during the Whole He liosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity inversion lines, amount of cancelled flux, the proxy Poynting flux, and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.
197 - H. Xu , R. Stepanov , K. Kuzanyan 2015
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six terms can be inferred from solar photospheric vector magnetograms. By comparing the results for simulation we distinguished the statistical difference of above six terms for isotropic and anisotropic cases. We estimated the relative degree of anisotropy for three typical active regions and found that it is of order 0.8 which means the assumption of local isotropy for the observable current helicity density terms is generally not satisfied for solar active regions. Upon studies of the statistical properties of the anisotropy of magnetic field of solar active regions with latitudes and with evolution in the solar cycle, we conclude that the consistency of that assumption of local homogeneity and isotropy requires further analysis in the light of our findings.
121 - Tom Schad 2011
Active regions often host large-scale gas flows in the chromosphere presumably directed along curved magnetic field lines. Spectropolarimetric observations of these flows are critical to understanding the nature and evolution of their anchoring magne tic structure. We discuss recent work with the Facility Infrared Spectropolarimeter (FIRS) located at the Dunn Solar Telescope in New Mexico to achieve high resolution imaging-spectropolarimetry of the Fe I lines at 630 nm, the Si I line at 1082.7 nm, and the He I triplet at 1083 nm. We present maps of the photospheric and chromospheric magnetic field vector above a sunspot as well as discuss characteristics of surrounding chromospheric flow structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا