ﻻ يوجد ملخص باللغة العربية
We present results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from January 1997 until December 2006 are utilized. Data from the Michelson Doppler Imager (MDI) instrument on-board the {it Solar and Heliospheric Observatory} (SOHO) operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph and {it Hinode} SOT/SP instrument were used. Intermittency spectra were derived via high-order structure functions and flatness functions. The flatness function exponent is a measure of the degree of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated to the flare productivity (the correlation coefficient is - 0.63). {it Hinode} data show that the intermittency regime is extended toward the small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be more broad for ARs of highest flare productivity as compared to that of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. Strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.
Dynamical changes in the solar corona have proven to be very important in inducing seismic waves into the photosphere. Different mechanisms for their generation have been proposed. In this work, we explore the magnetic field forces as plausible mecha
Line-of-sight magnetograms for 217 active regions (ARs) of different flare rate observed at the solar disk center from January 1997 until December 2006 are utilized to study the turbulence regime and its relationship to the flare productivity. Data f
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six
SDO/AIA images the full solar disk in several EUV bands that are each sensitive to coronal plasma emissions of one or more specific temperatures. We observe that when isolated active regions (ARs) are on the disk, full-disk images in some of the coro
The current helicity in solar active regions derived from vector magnetograph observations for more than 20 years indicates the so-called hemispheric sign rule; the helicity is predominantly negative in the northern hemisphere and positive in the sou