ترغب بنشر مسار تعليمي؟ اضغط هنا

Local entanglement of multidimensional continuous-variable systems

147   0   0.0 ( 0 )
 نشر من قبل Ho-Chih Lin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the `local entanglement remaining after filtering operations corresponding to imperfect measurements performed by one or both parties, such that the parties can only determine whether or not the system is located in some region of space. The local entanglement in pure states of general bipartite multidimensional continuous-variable systems can be completely determined through simple expressions. We apply our approach to semiclassical WKB systems, multi-dimensional harmonic oscillators, and a hydrogen atom as three examples.



قيم البحث

اقرأ أيضاً

465 - C. Gabriel , A. Aiello , W. Zhong 2010
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they con tain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber.
We propose three criteria for identifying continuous variable entanglement between two many-particle systems with no restrictions on the quantum state of the local oscillators used in the measurements. Mistakenly asserting a coherent state for the lo cal oscillator can lead to incorrectly identifying the presence of entanglement. We demonstrate this in simulations with 100 particles, and also find that large number fluctuations do not prevent the observation of entanglement. Our results are important for quantum information experiments with realistic Bose-Einstein condensates or in optics with arbitrary photon states.
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gaug ed using measures of the degree of inseparability and the degree of EPR paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic field s or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements {M. Abdi textit{et al.}, Phys. Rev. Lett. textbf{109}, 143601 (2012)}]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا