ﻻ يوجد ملخص باللغة العربية
This work is motivated by two problems: 1) The approach of manifolds and spaces by triangulations. 2) The complexity growth in sequences of polyhedra. Considering both problems as related, new criteria and methods for approximating smooth manifolds are deduced. When the sequences of polyhedra are obtained by the action of a discrete group or semigroup, further control is given by geometric, topologic and complexity observables. We give a set of relevant examples to illustrate the results, both in infinite and finite dimensions.
In the spirit of topological entropy we introduce new complexity functions for general dynamical systems (namely groups and semigroups acting on closed manifolds) but with an emphasis on the dynamics induced on simplicial complexes. For expansive sys
We construct a discrete form of Hamiltons Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einsteins theory of general relativity known as
The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized the distributed tasks that are wait-free solvable, and thus uncovered a deep connection with algebraic topology. We present a novel interpretation of thi
Graph manifolds are manifolds that decompose along tori into pieces with a tame $S^1$-structure. In this paper, we prove that the simplicial volume of graph manifolds (which is known to be zero) can be approximated by integral simplicial volumes of t
Hamiltons Ricci flow (RF) equations were recently expressed in terms of the edge lengths of a d-dimensional piecewise linear (PL) simplicial geometry, for d greater than or equal to 2. The structure of the simplicial Ricci flow (SRF) equations are di