ﻻ يوجد ملخص باللغة العربية
The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized the distributed tasks that are wait-free solvable, and thus uncovered a deep connection with algebraic topology. We present a novel interpretation of this theorem, through the notion of continuous task, defined by an input/output specification that is a continuous function. To do so, we introduce a chromatic version of a foundational result for algebraic topology: the simplicial approximation theorem. In addition to providing a different proof of the ACT, the notion of continuous task seems interesting in itself. Indeed, besides the fact that certain distributed problems are naturally specified by continuous functions, continuous tasks have an expressive power that also allows to specify the density of desired outputs for each combination of possible inputs,for example.
We study the effect of edge contractions on simplicial homology because these contractions have turned to be useful in various applications involving topology. It was observed previously that contracting edges that satisfy the so called link conditio
Simplicial complexes are a versatile and convenient paradigm on which to build all the tools and techniques of the logic of knowledge, on the assumption that initial epistemic models can be described in a distributed fashion. Thus, we can define: kno
This work is motivated by two problems: 1) The approach of manifolds and spaces by triangulations. 2) The complexity growth in sequences of polyhedra. Considering both problems as related, new criteria and methods for approximating smooth manifolds a
We present simplicial neural networks (SNNs), a generalization of graph neural networks to data that live on a class of topological spaces called simplicial complexes. These are natural multi-dimensional extensions of graphs that encode not only pair
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.