ترغب بنشر مسار تعليمي؟ اضغط هنا

Integral approximation of simplicial volume of graph manifolds

87   0   0.0 ( 0 )
 نشر من قبل Daniel Fauser
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph manifolds are manifolds that decompose along tori into pieces with a tame $S^1$-structure. In this paper, we prove that the simplicial volume of graph manifolds (which is known to be zero) can be approximated by integral simplicial volumes of their finite coverings. This gives a uniform proof of the vanishing of rank gradients, Betti number gradients and torsion homology gradients for graph manifolds.



قيم البحث

اقرأ أيضاً

We consider the relation between simplicial volume and two of its variants: the stable integral simplicial volume and the integral foliated simplicial volume. The definition of the latter depends on a choice of a measure preserving action of the fund amental group on a probability space. We show that integral foliated simplicial volume is monotone with respect to weak containment of measure preserving actions and yields upper bounds on (integral) homology growth. Using ergodic theory we prove that simplicial volume, integral foliated simplicial volume and stable integral simplicial volume coincide for closed hyperbolic 3-manifolds and closed aspherical manifolds with amenable residually finite fundamental group (being equal to zero in the latter case). However, we show that integral foliated simplicial volume and the classical simplicial volume do not coincide for hyperbolic manifolds of dimension at least 4.
Integral foliated simplicial volume is a version of simplicial volume combining the rigidity of integral coefficients with the flexibility of measure spaces. In this article, using the language of measure equivalence of groups we prove a proportional ity principle for integral foliated simplicial volume for aspherical manifolds and give refined upper bounds of integral foliated simplicial volume in terms of stable integral simplicial volume. This allows us to compute the integral foliated simplicial volume of hyperbolic 3-manifolds. This is complemented by the calculation of the integral foliated simplicial volume of Seifert 3-manifolds.
We prove that cubical simplicial volume of oriented closed 3-manifolds is equal to one fifth of ordinary simplicial volume.
We prove that any mapping torus of a closed 3-manifold has zero simplicial volume. When the fiber is a prime 3-manifold, classification results can be applied to show vanishing of the simplicial volume, however the case of reducible fibers is by far more subtle. We thus analyse the possible self-homeomorphisms of reducible 3-manifolds, and use this analysis to produce an explicit representative of the fundamental class of the corresponding mapping tori. To this end, we introduce a new technique for understanding self-homeomorphisms of connected sums in arbitrary dimensions on the level of classifying spaces and for computing the simplicial volume. In particular, we extend our computations to mapping tori of certain connected sums in higher dimensions. Our main result completes the picture for the vanishing of the simplicial volume of fiber bundles in dimension four. Moreover, we deduce that dimension four together with the trivial case of dimension two are the only dimensions where all mapping tori have vanishing simplicial volume. As a group theoretic consequence, we derive an alternative proof of the fact that the fundamental group $G$ of a mapping torus of a 3-manifold $M$ is Gromov hyperbolic if and only if $M$ is virtually a connected sum $# S^2times S^1$ and $G$ does not contain $mathbb{Z}^2$.
We show that closed aspherical manifolds supporting an affine structure, whose holonomy map is injective and contains a pure translation, must have vanishing simplicial volume. This provides some further evidence for the veracity of the Auslander Con jecture. Along the way, we provide a simple cohomological criterion for aspherical manifolds with normal amenable subgroups of $pi_1$ to have vanishing simplicial volume. This answers a special case of a question due to Luck.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا