ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the QCD phase transition in core collapse supernova simulations in spherical symmetry

130   0   0.0 ( 0 )
 نشر من قبل Xiong Wei Liu
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We apply this equation of state to highly asymmetric core collapse supernova matter with finite temperatures and large baryon densities. The phase transition is constructed using the general Gibbs conditions, which results in an extended coexistence region between the pure hadronic and pure quark phases in the phase diagram, i.e. the mixed phase. The supernovae are simulated via general relativistic radiation hydrodynamics based on three flavor Boltzmann neutrino transport in spherical symmetry. During the dynamical evolution temperatures above 10 MeV, baryon densities above nuclear saturation density and a proton-to-baryon ratio below 0.2 are obtained. At these conditions the phase transition is triggered which leads to a significant softening of the EoS for matter in the mixed phase. As a direct consequence of the stiffening of the EoS again for matter in the pure quark phase, a shock wave forms at the boundary between the mixed and the pure hadronic phases. This shock is accelerated and propagates outward which releases a burst of neutrinos dominated by electron anti-neutrinos due to the lifted degeneracy of the shock-heated hadronic material. We discuss the radiation-hydrodynamic evolution of the phase transition at the example of several low and intermediate mass Fe-core progenitor stars and illustrate the expected neutrino signal from the phase transition.



قيم البحث

اقرأ أيضاً

We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative compariso n. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the core-collapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first ~500ms after core bounce) spherically-symmetric evolution of a 20 solar mass progenitor star from six different core-collapse supernovae codes: 3DnSNe-IDSA, AGILE-BOLTZTRAN, FLASH, F{sc{ornax}}, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.
Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on arti ficial explosion methods that do not adequately capture the physics of the innermost layers of the star. The PUSH method, calibrated against SN1987A, utilizes the energy of heavy-flavor neutrinos emitted by the proto-neutron star (PNS) to trigger parametrized explosions. This makes it possible to follow the consistent evolution of the PNS and to ensure a more accurate treatment of the electron fraction of the ejecta. Here, we present the Iron group nucleosynthesis results for core-collapse supernovae, exploded with PUSH, for two different progenitor series. Comparisons of the calculated yields to observational metal-poor star data are also presented. Nucleosynthesis yields will be calculated for all elements and over a wide range of progenitor masses. These yields can be immensely useful for models of galactic chemical evolution.
In a previously presented proof-of-principle study, we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae for a wide range of pre-explosion models. The method is based on the neutrino-driven mechanism and follows collapse, bounce and explosion. There are two crucial aspects of our model for nucleosynthesis predictions. First, the mass cut and explosion energy emerge simultaneously from the simulation (determining, for each stellar model, the amount of Fe-group ejecta). Second, the interactions between neutrinos and matter are included consistently (setting the electron fraction of the innermost ejecta). In the present paper, we use the successful explosion models from Ebinger et al. (2018) which include two sets of pre-explosion models at solar metallicity, with combined masses between 10.8 and 120 M$_{odot}$. We perform systematic nucleosynthesis studies and predict detailed isotopic yields. The resulting $^{56}$Ni ejecta are in overall agreement with observationally derived values from normal core-collapse supernovae. The Fe-group yields are also in agreement with derived abundances for metal-poor star HD84937. We also present a comparison of our results with observational trends in alpha element to iron ratios.
I summarize what we have learned about the nature of stars that ultimately explode as core-collapse supernovae from the examination of images taken prior to the explosion. By registering pre-supernova and post-supernova images, usually taken at high resolution using either space-based optical detectors, or ground-based infrared detectors equipped with laser guide star adaptive optics systems, nearly three dozen core-collapse supernovae have now had the properties of their progenitor stars either directly measured or (more commonly) constrained by establishing upper limits on their luminosities. These studies enable direct comparison with stellar evolution models that, in turn, permit estimates of the progenitor stars physical characteristics to be made. I review progenitor characteristics (or constraints) inferred from this work for each of the major core-collapse supernova types (II-Plateau, II-Linear, IIb, IIn, Ib/c), with a particular focus on the analytical techniques used and the processes through which conclusions have been drawn. Brief discussion of a few individual events is also provided, including SN 2005gl, a type IIn supernova that is shown to have had an extremely luminous -- and thus very massive -- progenitor that exploded shortly after a violent, luminous blue variable-like eruption phase, contrary to standard theoretical predictions.
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction i s employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M$_{odot}$ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more explodable. In fact, for our 25-M$_{odot}$ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا