ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Comparison of Core-Collapse Supernova Simulations in Spherical Symmetry

133   0   0.0 ( 0 )
 نشر من قبل Evan O'Connor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative comparison. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the core-collapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first ~500ms after core bounce) spherically-symmetric evolution of a 20 solar mass progenitor star from six different core-collapse supernovae codes: 3DnSNe-IDSA, AGILE-BOLTZTRAN, FLASH, F{sc{ornax}}, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.



قيم البحث

اقرأ أيضاً

We present spherically symmetric (1D) and axisymmetric (2D) supernova simulations for a convection-dominated 9 Msun and a 20 Msun progenitor that develops violent activity by the standing-accretion-shock instability (SASI). We compare in detail the A enus-Alcar code, which uses fully multidimensional two-moment neutrino transport with an M1 closure, with a ray-by-ray-plus (RbR+) version of this code and with the Prometheus-Vertex code that employs RbR+ two-moment transport with a Boltzmann closure. Besides testing consequences of ignored non-radial neutrino-flux components in the RbR+ approximation, we also discuss the influence of various transport ingredients applied or not applied in recent literature, namely simplified neutrino-pair processes, neutrino-electron scattering, velocity-dependent and gravitational-redshift terms, and strangeness and many-body corrections for neutrino-nucleon scattering. Alcar and Vertex show excellent agreement in 1D and 2D despite a slightly but systematically smaller radius (~1km) and stronger convection of the proto-neutron star with Alcar. As found previously, the RbR+ approximation is conducive to explosions, but much less severely in the convection-dominated 9 Msun case than in the marginally exploding 20 Msun model, where the onset time of explosion also exhibits big stochastic variations, and the RbR+ approximation has no distinctly stronger supportive effect than simplified pair processes or strangeness and many-body corrections. Neglecting neutrino-electron scattering has clearly unfavorable effects for explosions, while ignoring velocity and gravitational-redshift effects can both promote or delay the explosion. The ratio of advection timescale to neutrino-heating timescale in 1D simulations is a sensitive indicator of the influence of physics ingredients on explosions also in multidimensional simulations.
133 - T. Fischer , I. Sagert , M. Hempel 2010
For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We app ly this equation of state to highly asymmetric core collapse supernova matter with finite temperatures and large baryon densities. The phase transition is constructed using the general Gibbs conditions, which results in an extended coexistence region between the pure hadronic and pure quark phases in the phase diagram, i.e. the mixed phase. The supernovae are simulated via general relativistic radiation hydrodynamics based on three flavor Boltzmann neutrino transport in spherical symmetry. During the dynamical evolution temperatures above 10 MeV, baryon densities above nuclear saturation density and a proton-to-baryon ratio below 0.2 are obtained. At these conditions the phase transition is triggered which leads to a significant softening of the EoS for matter in the mixed phase. As a direct consequence of the stiffening of the EoS again for matter in the pure quark phase, a shock wave forms at the boundary between the mixed and the pure hadronic phases. This shock is accelerated and propagates outward which releases a burst of neutrinos dominated by electron anti-neutrinos due to the lifted degeneracy of the shock-heated hadronic material. We discuss the radiation-hydrodynamic evolution of the phase transition at the example of several low and intermediate mass Fe-core progenitor stars and illustrate the expected neutrino signal from the phase transition.
We have conducted nineteen state-of-the-art 3D core-collapse supernova simulations spanning a broad range of progenitor masses. This is the largest collection of sophisticated 3D supernova simulations ever performed. We have found that while the majo rity of these models explode, not all do, and that even models in the middle of the available progenitor mass range may be less explodable. This does not mean that those models for which we did not witness explosion would not explode in Nature, but that they are less prone to explosion than others. One consequence is that the compactness measure is not a metric for explodability. We find that lower-mass massive star progenitors likely experience lower-energy explosions, while the higher-mass massive stars likely experience higher-energy explosions. Moreover, most 3D explosions have a dominant dipole morphology, have a pinched, wasp-waist structure, and experience simultaneous accretion and explosion. We reproduce the general range of residual neutron-star masses inferred for the galactic neutron-star population. The most massive progenitor models, however, in particular vis `a vis explosion energy, need to be continued for longer physical times to asymptote to their final states. We find that while the majority of the inner ejecta have Y$_e = 0.5$, there is a substantial proton-rich tail. This result has important implications for the nucleosynthetic yields as a function of progenitor. Finally, we find that the non-exploding models eventually evolve into compact inner configurations that experience a quasi-periodic spiral SASI mode. We otherwise see little evidence of the SASI in the exploding models.
In a previously presented proof-of-principle study we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae. The present paper goes beyond a specific application that is able to reproduce observational properties of SN1987A and performs a systematic study of the explosion properties for an extensive set of non-rotating, solar metallicity stellar progenitor models in the mass range from 10.8 to 120 M$_odot$.This includes the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae and faint/failed supernovae. The present paper provides the basis for extended nucleosynthesis predictions in a forthcoming paper to be employed in galactic evolution models.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا