ﻻ يوجد ملخص باللغة العربية
We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M$_{odot}$ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more explodable. In fact, for our 25-M$_{odot}$ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.
Self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) are conducted with the Aenus-Alcar code, comparing, for the first time, calculations with fully multi-dimensional (FMD) neutrino transport and the ray-by-ray-
Most supernova explosions accompany the death of a massive star. These explosions give birth to neutron stars and black holes and eject solar masses of heavy elements. However, determining the mechanism of explosion has been a half-century journey of
We explore with self-consistent 2D F{sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse
For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We app
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare differ