ﻻ يوجد ملخص باللغة العربية
We present the results of our $^{13}$C NMR study of the quasi-two-dimensional organic conductor $theta$-(BEDT-TTF)$_2$I$_{3}$ under pressure, which is suggested to be a zero-gap conductor by transport measurements. We found that NMR spin shift is proportional to $T$ and that spin-lattice relaxation rate follows the power law $T^{alpha}$ ($alpha =3 sim 4$), where $T$ is the temperature. This behavior is consistent with the cone-like band dispersion and provides microscopic evidence for the realization of the zero-gap state in the present material under pressure.
We report a $^{13}$C-NMR study on the ambient-pressure metallic phase of the layered organic conductor $theta$-(BEDT-TTF)$_{2}$I$_{3}$ [BEDT-TTF: bisethylenedithio-tetrathiafulvalene], which is expected to connect the physics of correlated electrons
The conducting state of the quasi-two-dimensional organic conductor, $alpha$-(BEDT-TTF)$_2$I$_3$, at ambient pressure is investigated with $^{13}$C NMR measurements, which separate the local electronic states at three nonequivalent molecular sites (A
The ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$, which has the same structure as the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$, was investigated by magnetic susceptibility and $^{13}$C NMR measurements. The temperature dependence of the
The effects of electron correlation in the quasi-two-dimensional organic conductor alpha-(BEDT-TTF)2I3 are investigated theoretically by using an extended Hubbard model with on-site and nearest-neighbor Coulomb interactions. A variational Monte Carlo
To verify the effect of geometrical frustration, we artificially distort the triangular lattice of quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [BEDT-TTF: bis(ethylenedithio)terathiofulvalene] by analogous-molecular su