ﻻ يوجد ملخص باللغة العربية
We report a $^{13}$C-NMR study on the ambient-pressure metallic phase of the layered organic conductor $theta$-(BEDT-TTF)$_{2}$I$_{3}$ [BEDT-TTF: bisethylenedithio-tetrathiafulvalene], which is expected to connect the physics of correlated electrons and Dirac electrons under pressure. The orientation dependence of the NMR spectra shows that all BEDT-TTF molecules in the unit cell are to be seen equivalent from a microscopic point of view. This feature is consistent with the orthorhombic symmetry of the BEDT-TTF sublattice and also indicates that the monoclinic $I_{3}$ sublattice, which should make three molecules in the unit cell nonequivalent, is not practically influential on the electronic state in the conducting BEDT-TTF layers at ambient pressure. There is no signature of charge disproportionation in opposition to most of the $theta$-type BEDT-TTF salts. The analyses of NMR Knight shift, $K$, and the nuclear spin-lattice relaxation rate, $1/T_{1}$, revealed that the degree of electron correlation, evaluated by the Korringa ratio [$varpropto 1/(T_{1}TK^{2}$)], is in an intermediate regime. However, NMR relaxation rate $1/T_{1}$ is enhanced above $sim$ 200K, which possibly indicates that the system enters into a quantum critical regime of charge-order fluctuations as suggested theoretically.
We present the results of our $^{13}$C NMR study of the quasi-two-dimensional organic conductor $theta$-(BEDT-TTF)$_2$I$_{3}$ under pressure, which is suggested to be a zero-gap conductor by transport measurements. We found that NMR spin shift is pro
The conducting state of the quasi-two-dimensional organic conductor, $alpha$-(BEDT-TTF)$_2$I$_3$, at ambient pressure is investigated with $^{13}$C NMR measurements, which separate the local electronic states at three nonequivalent molecular sites (A
The ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$, which has the same structure as the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$, was investigated by magnetic susceptibility and $^{13}$C NMR measurements. The temperature dependence of the
We performed angular and temperature-dependent electron-spin-resonance measurements in the quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]I. The interlayer spin-diffusion is much weaker compared to the Cl- and Br-analogues
To verify the effect of geometrical frustration, we artificially distort the triangular lattice of quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [BEDT-TTF: bis(ethylenedithio)terathiofulvalene] by analogous-molecular su