ﻻ يوجد ملخص باللغة العربية
To verify the effect of geometrical frustration, we artificially distort the triangular lattice of quasi-two-dimensional organic conductor $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [BEDT-TTF: bis(ethylenedithio)terathiofulvalene] by analogous-molecular substitution and apply $^{13}$C NMR of bulk and substituted sites, electric conductivity, and static magnetic susceptibility measurements. The results indicate that the magnetic characteristics of the substituted sample are quantitatively similar to those of the pure sample. Moreover the magnetic characteristics at the substituted sites are also the same as in the bulk. These results suggest that the observed magnetic properties may not be due to the geometrical frustration but the importance of disorder.
The ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$, which has the same structure as the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$, was investigated by magnetic susceptibility and $^{13}$C NMR measurements. The temperature dependence of the
We have in detail characterized the anisotropic charge response of the dimer Mott insulator $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and cl
Geometrical frustration, quantum entanglement and disorder may prevent long-range order of localized spins with strong exchange interactions, resulting in a novel state of matter. $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ is considered the best approxima
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T
The organic charge-transfer salt $kappa$-(BEDT-TTF)$_{2}$Hg(SCN)$_{2}$Br is a quasi two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below $T=80$ K it undergoes a pronounced transition to an insulating phase