ﻻ يوجد ملخص باللغة العربية
Gravitational waves (GWs) are expected to play a crucial role in the development of multimessenger astrophysics. The combination of GW observations with other astrophysical triggers, such as from gamma-ray and X-ray satellites, optical/radio telescopes, and neutrino detectors allows us to decipher science that would otherwise be inaccessible. In this paper, we provide a broad review from the multimessenger perspective of the science reach offered by the third generation interferometric GW detectors and by the Einstein Telescope (ET) in particular. We focus on cosmic transients, and base our estimates on the results obtained by ETs predecessors GEO, LIGO, and Virgo.
Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, whic
The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitiv
The second-generation interferometric gravitational wave detectors currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science and will ope
The proposed third-generation gravitational-wave detectors Einstein Telescope will have a triangular design that consists of three colocated interferometers. Summing the strain outputs from the three interferometers will cancel any gravitational-wave
A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities