ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope

217   0   0.0 ( 0 )
 نشر من قبل Chris Van Den Broeck
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The second-generation interferometric gravitational wave detectors currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science and will open up a new era in astrophysics, cosmology, and fundamental physics. Already with the first detections, we will be able to, among other things, establish the nature of short-hard gamma ray bursts, definitively confirm the existence of black holes, measure the Hubble constant in a completely independent way, and for the first time gain access to the genuinely strong-field dynamics of gravity. Hence it is timely to consider the longer-term future of this new field. The Einstein Telescope (ET) is a concrete conceptual proposal for a third-generation gravitational wave observatory, which will be ~10 times more sensitive in strain than the second-generation detectors. This will give access to sources at cosmological distances, with a correspondingly higher detection rate. I give an overview of the science case for ET, with a focus on what can be learned from signals emitted by coalescing compact binaries. Third-generation observatories will allow us to map the coalescence rate out to redshifts z ~ 3, determine the mass functions of neutron stars and black holes, and perform precision measurements of the neutron star equation of state. ET will enable us to study the large-scale structure and evolution of the Universe without recourse to a cosmic distance ladder. Finally, I discuss how it will allow for high-precision measurements of strong-field, dynamical gravity.



قيم البحث

اقرأ أيضاً

Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astroph ysics and cosmology through observations of inspiraling and coalescing compact binaries. In particular, ET would give us unprecedented insight into the mass function of neutron stars and black holes, the internal structure of neutron stars, the evolution of coalescence rates over cosmological timescales, and the geometry and dynamics of the Universe as a whole.
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
82 - A. Z. Jan , J. Lange (2 2020
As Einsteins equations for binary compact object inspiral have only been approximately or intermittently solved by analytic or numerical methods, the models used to infer parameters of gravitational wave (GW) sources are subject to waveform modeling uncertainty. Using a simple scenario, we illustrate these differences, then introduce a very efficient technique to marginalize over waveform uncertainties, relative to a pre-specified sequence of waveform models. Being based on RIFT, a very efficient parameter inference engine, our technique can directly account for any available models, including very accurate but computationally costly waveforms. Our evidence and likelihood-based method works robustly on a point-by-point basis, enabling accurate marginalization for models with strongly disjoint posteriors while simultaneously increasing the reusability and efficiency of our intermediate calculations.
As the Cosmology and Fundamental Physics (CFP) panel is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of the early universe, the microwave background, the reionization and galaxy formation up to virialization of protogalaxies, large scale structure, the intergalactic medium, the determination of cosmological parameters, dark matter, dark energy, tests of gravity, astronomically determined physical constants, and high energy physics using astronomical messengers. Central to the progress in these areas are the corresponding advances in laboratory astrophysics which are required for fully realizing the CFP scientific opportunities within the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics which produce the observed astrophysical processes. The 5 areas of laboratory astrophysics which we have identified as relevant to the CFP panel are atomic, molecular, plasma, nuclear, and particle physics. Here, Section 2 describes some of the new scientific opportunities and compelling scientific themes which will be enabled by advances in laboratory astrophysics. In Section 3, we provide the scientific context for these opportunities. Section 4 briefly discusses some of the experimental and theoretical advances in laboratory astrophysics required to realize the CFP scientific opportunities of the next decade. As requested in the Call for White Papers, Section 5 presents four central questions and one area with unusual discovery potential. Lastly, we give a short postlude in Section 6.
We propose a novel method to test the binary black hole (BBH) nature of compact binaries detectable by gravitational wave (GW) interferometers and hence constrain the parameter space of other exotic compact objects. The spirit of the test lies in the no-hair conjecture for black holes where all properties of a black hole are characterised by the mass and the spin of the black hole. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence uniquely encodes the nature of the compact binary. Thus we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا