ﻻ يوجد ملخص باللغة العربية
A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities open new perspectives for better understanding of our universe. In this work, we investigate the significance of detection of sub-solar mass binaries with components mass in the range: $10^{-2} M_odot$ up to 1$M_odot$, within the expected sensitivity of the ground-based gravitational waves detectors of third-generation, viz., the Einstein Telescope (ET) and the Cosmic Explorer (CE). Assuming a minimum of amplitude signal-to-noise ratio for detection, viz., $rho = 8$, we find that the maximum horizon distances for an ultra-compact binary system with components mass $10^{-2} , M_odot$ and 1$M_odot$ are 40 Mpc and 1.89 Gpc, respectively, for ET, and 125 Mpc and 5.8 Gpc, respectively, for CE. Other cases are also presented in the text. We derive the merger rate, and discuss consequences on the abundances of primordial black hole (PBH), $f_{rm PBH}$. Considering the entire mass range [$10^{-2}$ - 1]$M_odot$, we find $f_{rm PBH} < 0.70$ ($<$ $0.06$) for ET (CE), respectively.
Primordial black holes possibly formed in the early universe could provide a significant fraction of the dark matter and would be unique probes of inflation. A smoking gun for their discovery would be the detection of a subsolar mass compact object.
Einstein Telescope (ET) is a possible third generation ground-based gravitational wave observatory for which a design study is currently being carried out. A brief (and non-exhaustive) overview is given of ETs projected capabilities regarding astroph
The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitiv
The second-generation interferometric gravitational wave detectors currently under construction are expected to make their first detections within this decade. This will firmly establish gravitational wave physics as an empirical science and will ope
We present an Advanced LIGO and Advanced Virgo search for sub-solar mass ultracompact objects in data obtained during Advanced LIGOs second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this searc