ﻻ يوجد ملخص باللغة العربية
The size of silicon transistors used in microelectronic devices is shrinking to the level where quantum effects become important. While this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in Si can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility to eliminate nuclear spins from the bulk crystal. However, the control of single electrons in Si has proved challenging, and has so far hindered the observation and manipulation of a single spin. Here we report the first demonstration of single-shot, time-resolved readout of an electron spin in Si. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor - compatible with current microelectronic technology. We observed a spin lifetime approaching 1 second at magnetic fields below 2 T, and achieved spin readout fidelity better than 90%. High-fidelity single-shot spin readout in Si opens the path to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.
Single electron spins confined in silicon quantum dots hold great promise as a quantum computing architecture with demonstrations of long coherence times, high-fidelity quantum logic gates, basic quantum algorithms and device scalability. While singl
In this work we perform direct single-shot readout of the singlet-triplet states in exchange coupled electrons confined to precision placed donor atoms in silicon. Our method takes advantage of the large energy splitting given by the Pauli-spin block
The silicon monovacancy in 4H-SiC is a promising candidate for solid-state quantum information processing. We perform high-resolution optical spectroscopy on single V2 defects at cryogenic temperatures. We find favorable low temperature optical prope
Electrons confined in semiconductor quantum dot arrays have both charge and spin degrees of freedom. The spin provides a well-controllable and long-lived qubit implementation. The charge configuration in the dot array is influenced by Coulomb repulsi
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correla