ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant optical spin initialization and readout of single silicon vacancies in 4H-SiC

136   0   0.0 ( 0 )
 نشر من قبل Sam Carter
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The silicon monovacancy in 4H-SiC is a promising candidate for solid-state quantum information processing. We perform high-resolution optical spectroscopy on single V2 defects at cryogenic temperatures. We find favorable low temperature optical properties that are essential for optical readout and coherent control of its spin and for the development of a spin-photon interface. The common features among individual defects include two narrow, nearly lifetime-limited optical transitions that correspond to $m_s{=}pm 3/2$ and $m_s{=}pm 1/2$ spin states with no discernable zero-field splitting fluctuations. Initialization and readout of the spin states is characterized by time-resolved optical spectroscopy under resonant excitation of these transitions, showing significant differences between the $pm 3/2$ and $pm 1/2$ spin states. These results are well-described by a theoretical model that strengthens our understanding of the quantum properties of this defect.



قيم البحث

اقرأ أيضاً

Point defects in solids promise precise measurements of various quantities. Especially magnetic field sensing using the spin of point defects has been of great interest recently. When optical readout of spin states is used, point defects achieve opti cal magnetic imaging with high spatial resolution at ambient conditions. Here, we demonstrate that genuine optical vector magnetometry can be realized using the silicon vacancy in SiC, which has an uncommon S=3/2 spin. To this end, we develop and experimentally test sensing protocols based on a reference field approach combined with multi frequency spin excitation. Our works suggest that the silicon vacancy in an industry-friendly platform, SiC, has potential for various magnetometry applications at ambient conditions.
The silicon vacancy in silicon carbide is a strong emergent candidate for applications in quantum information processing and sensing. We perform room temperature optically-detected magnetic resonance and spin echo measurements on an ensemble of vacan cies and find the properties depend strongly on magnetic field. The spin echo decay time varies from less than 10 $mu$s at low fields to 80 $mu$s at 68 mT, and a strong field-dependent spin echo modulation is also observed. The modulation is attributed to the interaction with nuclear spins and is well-described by a theoretical model.
93 - J. Yoneda , K. Takeda , A. Noiri 2019
Single electron spins confined in silicon quantum dots hold great promise as a quantum computing architecture with demonstrations of long coherence times, high-fidelity quantum logic gates, basic quantum algorithms and device scalability. While singl e-shot spin detection is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to the probed spin polarization and can therefore be repeated to extinguish measurement errors. However, it has remained elusive for an electron spin in silicon as it involves exquisite exposure of the system to the external circuitry for readout while maintaining the coherence and integrity of the qubit. Here we show that an electron spin qubit in silicon can be measured in a highly non-demolition manner by probing another electron spin in a neighboring dot Ising-coupled to the qubit spin. The high non-demolition fidelity (99% on average) enables over 20 readout repetitions of a single spin state, yielding an overall average measurement fidelity of up to 95% within 1.2 ms. We further demonstrate that our repetitive QND readout protocol can realize heralded high-fidelity (> 99.6%) ground-state preparation. Our QND-based measurement and preparation, mediated by a second qubit of the same kind, will allow for a new class of quantum information protocols with electron spins in silicon without compromising the architectural homogeneity.
The size of silicon transistors used in microelectronic devices is shrinking to the level where quantum effects become important. While this presents a significant challenge for the further scaling of microprocessors, it provides the potential for ra dical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in Si can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility to eliminate nuclear spins from the bulk crystal. However, the control of single electrons in Si has proved challenging, and has so far hindered the observation and manipulation of a single spin. Here we report the first demonstration of single-shot, time-resolved readout of an electron spin in Si. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor - compatible with current microelectronic technology. We observed a spin lifetime approaching 1 second at magnetic fields below 2 T, and achieved spin readout fidelity better than 90%. High-fidelity single-shot spin readout in Si opens the path to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically-active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced s pin-dependent readout and long-term charge stability of the qubits. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy (VV) and silicon vacancy (Vsi), obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from VV ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading the electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the relative charge state populations. We develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا