ﻻ يوجد ملخص باللغة العربية
We investigate the magnetic properties of three Mn$_6$ single molecule magnets by means of inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The experimental data reveal that small structural distortions of the molecular geometry produce a significant effect on the energy level diagram and therefore on the magnetic properties of the molecule. We show that the giant spin model completely fails to describe the spin level structure of the ground spin multiplets. We analyze theoretically the spin Hamiltonian for the low spin Mn$_6$ molecule (S=4) and we show that the excited $S$ multiplets play a key role in determining the effective energy barrier for the magnetization reversal, in analogy to what was previously found for the two high spin Mn6 (S=12) molecules [S. Carretta et al., Phys. Rev. Lett. 100, 157203 (2008)].
In this paper we report results for magnetic observables of finite spin clusters composed of S=1/2 ions. We consider clusters of two, three and four spins in distinct spatial arrangements, with isotropic Heisenberg interactions of various strengths b
Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.
The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in
The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled $beta$-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o