ﻻ يوجد ملخص باللغة العربية
The Q dependence of the inelastic neutron scattering (INS) intensity of transitions within the ground-state spin multiplet of single-molecule magnets (SMMs) is considered. For these transitions, the Q dependence is related to the spin density map in the ground state, which in turn is governed by the Heisenberg exchange interactions in the cluster. This provides the possibility to infer the exchange-coupling constants from the Q dependence of the INS transitions within the spin ground state. The potential of this strategy is explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the molecule Mn12 as an example. The Q dependence is calculated for powder as well as single-crystal Mn12 samples for various exchange-coupling situations discussed in the literature. The results are compared to literature data on a powder sample of Mn12 and to measurements on an oriented array of about 500 single-crystals of Mn12. The calculated Q dependence exhibits significant variation with the exchange-coupling constants, in particular for a single-crystal sample, but the experimental findings did not permit an unambiguous determination. However, although challenging, suitable experiments are within the reach of todays instruments.
The low-lying magnetic excitations in the dimer of single-molecule magnets (Mn4)2 are studied by inelastic neutron scattering as a function of hydrostatic pressure. The anisotropy parameters D and B04, which describe each Mn4 subunit, are essentially
Cu(pyz)(NO3)2 is a quasi one-dimensional molecular antiferromagnet that exhibits three dimensional long-range magnetic order below TN=110 mK due to the presence of weak inter-chain exchange couplings. Here we compare calculations of the three largest
Quantum tunneling of the magnetization is a major obstacle to the use of single-molecule magnets (SMMs) as basic constituents of next-generation storage devices. In this context, phonons are often only considered (perturbatively) as disturbances that
In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible
It is shown that dipolar and weak superexchange interactions between the spin systems of single-molecule magnets (SMM) play an important role in the relaxation of magnetization. These interactions can reduce or increase resonant tunneling. The one-bo