ﻻ يوجد ملخص باللغة العربية
A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in Mn$_{2}$Ni$_{1+x}$Sn$_{1-x}$. Using first-principles DFT calculations, we explore the impacts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the Inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in Mn$_{2}$NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient Mn$_{2}$NiSn system.
It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensit
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn$_{1-x}$Fe$_x$Ge alloys have been investigated by first-principles calculations usi
We present the studies of structural, electrical, and magnetic properties of bulk Cd$_{1textrm{-}x}$Mn$_{x}$GeAs$_{2}$ crystals with low Mn content, $x$, varying from 0 to 0.037. The studied samples have excellent crystallographic quality indicated b
We present the studies of Sn/1-x/Cr/x/Te semimagnetic semiconductors with chemical composition x ranging from 0.004 to 0.012. The structural characterization indicates that even at low average Cr-content x < ?0.012, the aggregation into micrometer si
We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to