ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Outflows from AGN: a link between central black holes and galaxies

277   0   0.0 ( 0 )
 نشر من قبل Daniel Proga
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Proga




اسأل ChatGPT حول البحث

We summarize the results from numerical simulations of mass outflows from AGN. We focus on simulations of outflows driven by radiation from large-scale inflows. We discuss the properties of these outflows in the context of the so-called AGN feedback problem. Our main conclusion is that this type of outflows are efficient in removing matter but inefficient in removing energy.



قيم البحث

اقرأ أيضاً

The discovery of a relationship between supermassive black hole (SMBH) mass and spiral arm pitch angle (P) is evidence that SMBHs are tied to the overall secular evolution of a galaxy. The discovery of SMBHs in late-type galaxies with little or no bu lge suggests that an underlying correlation between the dark matter halo concentration and SMBH mass (MBH) exists, rather than between the bulge mass and MBH. In this paper we measure P using a two-dimensional fast fourier transform and estimate the bar pattern speeds of 40 barred spiral galaxies from the Carnegie-Irvine Galaxy Survey. The pattern speeds were derived by estimating the gravitational potentials of our galaxies from Ks-band images and using them to produce dynamical simulation models. The pattern speeds allow us to identify those galaxies with low central dark halo densities, or fast rotating bars, while P provides an estimate of MBH. We find that a wide range of MBH exists in galaxies with low central dark matter halo densities, which appears to support other theoretical results. We also find that galaxies with low central dark halo densities appear to follow more predictable trends in P versus de Vaucouleurs morphological type (T) and bar strength versus T than barred galaxies in general. The empirical relationship between MBH and total gravitational mass of a galaxy (Mtot) allows us to predict the minimum Mtot that will be observationally measured of our fast bar galaxies. These predictions will be investigated in a subsequent paper.
240 - Peng Wang 2018
The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that the satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environment dependence of this alignment are still unknown. In an attempt to figure out those, we use data constructed from SDSS DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignments dependence on the colour of the central galaxy. We find a very strong large-scale environmental dependence of the satellite-central alignment in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axis of the centrals, and the alignment angle decreases with environment namely when going from knots to voids. The alignment angle strongly depend on the ${}^{0.1}(g-r)$ colour of centrals. We suggest that the satellite-central alignment is the result of a competition between satellite accretion within large scale-structure and galaxy evolution inside host haloes. For groups containing red central galaxies, the satellite-central alignment is mainly determined by the evolution effect, while for blue central dominated groups, the effect of large-scale structure plays a more important role, especially in knots. Our results provide an explanation for how the satellite-central alignment forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements such the formation of the Milky Way and Centaurus As satellite system.
Nearby galaxy surveys have long classified X-ray binaries (XRBs) by the mass category of their donor stars (high-mass and low-mass). The NuSTAR observatory, which provides imaging data at E $>10$ keV, has enabled the classification of extragalactic X RBs by their compact object type: neutron star (NS) or black hole (BH). We analyzed NuSTAR/Chandra/XMM-Newton observations from a NuSTAR-selected sample of 12 galaxies within 5 Mpc having stellar masses ($M_{star}$) $10^{7-11}$ $M_{odot}$ and star formation rates (SFR) $approx0.01-15$ $M_{odot}$ yr$^{-1}$. We detect 128 NuSTAR sources to a sensitivity of $approx10^{38}$ erg s$^{-1}$. Using NuSTAR color-intensity and color-color diagrams we classify 43 of these sources as candidate NS and 47 as candidate BH. We further subdivide BH by accretion states (soft, intermediate, and hard) and NS by weak (Z/Atoll) and strong (accreting pulsar) magnetic field. Using 8 normal (Milky Way-type) galaxies in the sample, we confirm the relation between SFR and galaxy X-ray point source luminosity in the 4-25 and 12-25 keV energy bands. We also constrain galaxy X-ray point source luminosity using the relation $L_{rm{X}}=alpha M_{star}+betatext{SFR}$, finding agreement with previous work. The XLF of all sources in the 4-25 and 12-25 keV energy bands matches with the $alpha=1.6$ slope for high-mass XRBs. We find that NS XLFs suggest a decline beginning at the Eddington limit for a 1.4 $M_{odot}$ NS, whereas the BH fraction shows an approximate monotonic increase in the 4-25 and 12-25keV energy bands. We calculate the overall ratio of BH to NS to be $approx1$ for 4-25 keV and $approx2$ for 12-25 keV.
Recent observations and simulations have challenged the long-held paradigm that mergers are the dominant mechanism driving the growth of both galaxies and supermassive black holes (SMBH), in favour of non-merger (secular) processes. In this pilot stu dy of merger-free SMBH and galaxy growth, we use Keck Cosmic Web Imager spectral observations to examine four low-redshift ($0.043 < z < 0.073$) disk-dominated `bulgeless galaxies hosting luminous AGN, assumed to be merger-free. We detect blueshifted broadened [OIII] emission from outflows in all four sources, which the oiii/hbeta~ratios reveal are ionised by the AGN. We calculate outflow rates in the range $0.12-0.7~rm{M}_{odot}~rm{yr}^{-1}$, with velocities of $675-1710~rm{km}~rm{s}^{-1}$, large radial extents of $0.6-2.4~rm{kpc}$, and SMBH accretion rates of $0.02-0.07~rm{M}_{odot}~rm{yr}^{-1}$. We find that the outflow rates, kinematics, and energy injection rates are typical of the wider population of low-redshift AGN, and have velocities exceeding the galaxy escape velocity by a factor of $sim30$, suggesting that these outflows will have a substantial impact through AGN feedback. Therefore, if both merger-driven and non-merger-driven SMBH growth lead to co-evolution, this suggests that co-evolution is regulated by feedback in both scenarios. Simulations find that bars and spiral arms can drive inflows to galactic centres at rates an order of magnitude larger than the combined SMBH accretion and outflow rates of our four targets. This work therefore provides further evidence that non-merger processes are sufficient to fuel SMBH growth and AGN outflows in disk galaxies.
Existing models of galaxy formation have not yet explained striking correlations between structure and star-formation activity in galaxies, notably the sloped and moving boundaries that divide star-forming from quenched galaxies in key structural dia grams. This paper uses these and other relations to ``reverse-engineer the quenching process for central galaxies. The basic idea is that star-forming galaxies with larger radii (at a given stellar mass) have lower black-hole masses due to lower central densities. Galaxies cross into the green valley when the cumulative effective energy radiated by their black hole equals $sim4times$ their halo-gas binding energy. Since larger-radii galaxies have smaller black holes, one finds they must evolve to higher stellar masses in order to meet this halo-energy criterion, which explains the sloping boundaries. A possible cause of radii differences among star-forming galaxies is halo concentration. The evolutionary tracks of star-forming galaxies are nearly parallel to the green-valley boundaries, and it is mainly the sideways motions of these boundaries with cosmic time that cause galaxies to quench. BH-scaling laws for star-forming, quenched, and green-valley galaxies are different, and most BH mass growth takes place in the green valley. Implications include: the radii of star-forming galaxies are an important second parameter in shaping their black holes; black holes are connected to their halos but in different ways for star-forming, quenched, and green-valley galaxies; and the same BH-halo quenching mechanism has been in place since $z sim 3$. We conclude with a discussion of black hole-galaxy co-evolution, the origin and interpretation of BH scaling laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا